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Abstract:

He’s Homotopy Perturbation Method (HAM) is powerful and efficient technique to find the solution
of linear and nonlinear equation. In this paper exact solution of linear and nonlinear homogeneous
diffusion equations are obtained by HPM.
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1. INTRODUCTION

The HPM method was introduced by Ji-Huan He [1-4] of Shanghai University in 1998. This method has
been used by many Mathematicians and Engineers to solve various differential equations problems. HPM is
a series expansion method to used in the solution of nonlinear partial differential equations. The method
employs a homotopy transform to generate a convergent series solution of differential equations.

2. BASIC IDEA OF HOMOTOPY PERTURBATION METHOD

Consider the nonlinear functional equations:
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Where A = Functional operator
B = Boundary operator
1 =Boundary of the domain [

Generally A can be decomposed into two operators L and N, where L is Linear and N is nonlinear
operator.

Equation (1) can be written as
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(4)
Where

P [1000,11is an embedding parameter, Ug is an initial approximation of equation(1) which
satisfies the boundary conditions from equations (3) and (4) we will have
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The changing process of P from Zero to unity is just that of U (r, P from Ug toU [Or [J.In topology, this
is called deformation, while L TU 0 [ L “Ug Dand ACU 0 [0 f Or [ are called Homotopy.

According to HPM, we can first use the embedding parameter P as a small parameter, and assume that the
solution of equations (3) and (4) can be written as a power series in P .

Uuou
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Usually an approximation to the solution will be obtained by taking the limitas P [J1.

U limU 0 Ug 00U OU2 U3 e, (8)
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Equation (8) is the solution of equation (1) obtained by HPM.

3. LINEAR HOMOGENEOUS DIFFUSION EQUATION
Consider Linear Diffusion Equation
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Boundary conditions are given by
upgotpoooupltooto

Initial condition is given by

UOx, 00 0sin0x,00x01

This is a Heat equation which is solved by HPM.
Ugr,PO:0000,100 R for equation (9) is defined as (3)
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Suppose the solution
written as
Hinin(V

0 PU O P2U

0000 U

@ Nov-Dec 2018 IJIRMPS | ISSN: 2349-7300

Ot

of above Homotopy is power series in P [1(]0,1(] therefore equation (12 ) can be
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Comparing powers of p from both sides, we get
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Solving the above partial differential equations, we get
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solution of equation (9) can be written as
U [0 Ug U1 JU2 [1U3 [

2 23

UDOsinOxOgod

sin(Jx [

3
02 017 8

O10tsin 0 x

O10tsin O x O

(7z+1t)



Volume 6 Issue 6 @ Nov-Dec 2018 IJIRMPS | ISSN: 2349-7300

sinB x...............
2 6

2

0 02 0172

UosinOoxJ10002 010t 0 0 o0
0

0 2 6

0

3
w201t o

O

. 0002 010t
U [ sin [J xe U U

This is the exact solution of (9)

4. NONLINEAR HOMOGENEOUS DIFFUSION EQUATION
Consider non homogenous Diffusion Equation
Ut 0 3Uyxx OXx,00x00,t00

Boundary conditions are given by
uopotopooupgotoootoo

Initial condition is given by

UOx 00 0sinx, 00 x [0 [

This is a Heat equation which is solved by HPM.

Uor, PO: 0000,100 [0 R for equation (18) is defined as (3)
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Suppose the solution of above
Homotopy is power series in P [1(10,1(1therefore equation (21 ) can be written as

Comparing powers of P from both sides, we get
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Solving the above partial differential equations, we get
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solution of equation (18) can be written as
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0 2 6 0n

U [0 xt Osin xe'3t
This is the exact solution of (18)

CONCLUSION
In this paper we have applied HPM for linear and nonlinear diffusion equations and compared with exact
solutions. HPM is successful method to solve linear, nonlinear problems and gives quickly convergent.
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