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Abstract: In this paper, we have achieved the generalization of Ito formula, by considering his 𝑪𝟐 function 𝒇 like a 

distribution (extending differentiability conditions on this 𝒇 function). For this, we used the Tanaka’s theorem in ℝ; and the 

Brosamler’s theorem in ℝ𝒏. And then, the possibility to use a 𝑪𝒏 function in which the last part that is the second derivative 

of the 𝒇 function (in distributions term) will be a functional. 
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I. INTRODUCTION 

 

Let 𝑓 be a function of 𝐶2(ℝ) and let 𝑋𝑡 be a brownian motion in ℝ𝑛, the Ito formula is :   

𝑓(𝑋𝑡) = 𝑓(𝑋𝑂) + ∫ 𝑓′(𝑋𝑠)𝑑𝑋𝑆
𝑡

𝑜
+

1

2
∫ 𝑓′′ (𝑋𝑠)𝑑𝑠

𝑡

0
 .  (1) 

The equation (1) can be extended in two dimensions like this: 

Let 𝑓 be function in ([0, 𝑇] ×  ℝ) , 𝑓 is 𝐶1 class compare to 𝑡 ∈ ([0, 𝑇]), 𝑓 is 𝐶2 compare to 𝑥(𝑥 ∈ ℝ), we have  

𝑓(𝑡, 𝑋𝑡) = 𝑓(0, 𝑋0) + ∫ 𝑓𝑡
′ (𝑠, 𝑋𝑠)𝑑𝑠 + ∫ 𝑓𝑥

′ (𝑠, 𝑋𝑠)𝑑𝑋𝑠 +
𝑡

0

𝑡

0
 
1

2
∫ 𝑓𝑥𝑥

′′ (𝑠, 𝑋𝑠)𝑑〈𝑋〉𝑠
𝑡

0
 

his infinitesimal notation is: 

𝑑𝑓(𝑡, 𝑋𝑡) = 𝑓𝑡
′(𝑠, 𝑋𝑠)𝑑𝑠 + 𝑓𝑥

′ (𝑠, 𝑋𝑠)𝑑𝑋𝑠 +
1

2
𝑓𝑥𝑥

′′ (𝑠, 𝑋𝑠)𝑑〈𝑋〉𝑠 

where 〈𝑋〉𝑠 is the quadratic variation of 𝑋 (It can be interpreted like the length of 𝑋 trajectory). For other forms of Ito formula see 

[4] and [13]. 

Let us try to modify differentiability conditions of 𝑓 function in (1) (by assuming that  𝑓 is a distribution) and let us do the 

interpretation of the last part. 

 

II. DISTRIBUTIONS THEORY 

 

The distributions set into an opened set of ℝ𝑛 is particular because it renders functions indefinitely differentiable in « distributions 

term » on the same opened. That’s why we will consider in the following, the 𝑓 function in (1) like a distribution. 

Definition 2.1 (Support of a function, [10]) 

Let 𝑢 be a ℝ𝑛 in ℂ function, we call support of 𝑢, and we denote 𝑠𝑢𝑝𝑝(𝑢) the adherence in ℝ𝑛 of the set 𝐴 = {𝑥 ∈ ℝ𝑛| 𝑢(𝑥) ≠ 0} ; 
then, 𝑠𝑢𝑝𝑝(𝑢) = �̅�. 

Proposition 2.1 

It exists a numeric function 𝜑 defined in ℝ𝑛 verifying : 

1. 𝜑 ≠ 0 𝑒𝑡 𝜑 ≥ 0; 

2. 𝜑 ∈ 𝐶∞(ℝ𝑛) ; 
3. 𝑠𝑢𝑝𝑝(𝜑) ⊂ {𝑥 ∈ ℝ𝑛| ‖𝑥‖ ≤ 1} 

4. ∫ 𝜑(𝑥)𝑑𝑥 = 1
ℝ𝑛  

Definition 2.2 (regularizing sequence, [14]) 

Let 𝜑 be a function that verifies hypothesis in the proposition 2.1; we call regularizing sequence associated to 𝜑, the sequence of 

functions (𝜑𝑘)𝑘 ∈ ℕ∗ defined by  

𝜑𝑘: ℝ𝑛 → ℝ, 𝑥 → 𝜑𝑘(𝑥) = 𝑘𝑛𝜑(𝑘𝑥). 
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We have  𝜑𝑘 ≥ 0, 𝜑𝑘 ∈ ∁∞(ℝ𝑛) 

                  𝑠𝑢𝑝𝑝(𝜑𝑘) ⊂ 𝐵 (0,
1

𝑘
)  

for each  𝑘 ∈ ℕ∗, ∫ 𝜑𝑘(𝑥)𝑑𝑥 = 1
ℝ𝑛  

Definition 2.3 (order of a vector, [10]) 

Let 𝛀 be an opened set of ℝ𝑛, 𝐾 designates a compact subset of ℝ𝑛, non-empty interior, include in  𝛀 ∶  ∅ ≠ 𝐾° ⊂ 𝐾 ⊂ 𝜴. 

Let 𝛼 = (𝛼1, … , 𝛼𝑛) be an element of ℕ𝑛. We call order of 𝛼 and we denote |𝛼| the integer: 

|𝛼| = ∑ 𝛼𝑖
𝑛
𝑢=1 . 

Let 𝑢 be a ℝ𝑛 function in ℂ, 𝛼 an element of ℕ𝑛. We denote 𝐷𝛼𝑢 the 𝛼 order derivative of 𝑢𝛼 : 

𝐷𝛼𝑢 =
𝜕𝛼𝑢

𝜕𝛼1𝑥1 … 𝜕𝛼𝑛  𝑥𝑛

 

we denote 𝔇𝑘(𝛺) = {𝒖 ∈ ∁∞(𝛺)| 𝑠𝑢𝑝𝑝(𝑢) ⊂ 𝐾}. 

Definition 2.4 [14] 

A sequence (𝑢)𝑝∈ℕ of 𝔇𝑘(𝛺)  converges towards 𝑢 of  𝔇𝑘(𝛺), and we denote 𝑢 = lim
𝑝→∞

(𝑢𝑝), 

if ∀𝜀,∀𝑘𝜖ℕ, ∃𝑝𝑜
, ∀𝑝 ≥ 𝑝0: |α|≤k

sup
 |𝐷𝛼𝑢(𝑥) − 𝐷𝛼𝑢𝑝(𝑥)| ≤ 𝜀.
xϵΩ

sup
   

A subset 𝐴 of   𝔇𝑘(𝛺) is a bounded set if  

 

∀𝑘𝜖ℕ, ∃𝑀𝑘 > 0, ∀𝑢 𝜖 𝐴,
𝑠𝑢𝑝

|𝛼| ≤ 𝑘

      𝑠𝑢𝑝

       𝑥 ∈ 𝛺
|𝐷𝛼𝑢(𝑥)| < 𝑀𝑘 

Definition 2.5 (Test functions space, [10]) 

Let 𝛺 be a non-empty opened set of  ℝ𝑛. 

We call test functions space and we denote  𝔇𝑘(𝛺)  the set in the below: 

𝐷(𝛺) = {𝑢𝜖 ∁∞ (𝛺)|∃𝐾 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝐾 ⊂ 𝛺, 𝑢𝜖𝐷𝑘(𝛺)}. 

Definition 2.6 (Distribution, [10] ,[14]) 

Let 𝛺 an opened continuous linear form in 𝐷(𝛺). And we denote 𝐷′(𝛺) the distributions set. 

Notation. For any (𝑇, 𝑢) of 𝐷′(𝛺) × 𝐷(𝛺), 𝑇(𝑢) belongs to ℂ , and we denote 𝑇(𝑢) = 〈𝑇, 𝑢〉. 
 

Definition 2.7 (Derivatives of α order, [10]) 

Let 𝜴 be an opened set of ℝ𝑛, 𝑇 an element of 𝐷′(𝛺) :  for 𝛼 of ℕ𝑛, we call derivative of order 𝛼 of 𝑇 and we denote 𝐷𝛼𝑇 the 

application :  

 

𝐷𝛼: 𝐷(𝛺) → ℂ, 𝑢 ↦ 𝐷𝛼𝑇(𝑢) = (−1)|𝛼|〈𝑇, 𝐷𝛼𝑢〉. 

 

This concept of derivation will render indefinitely derivable any distributions; which will coincide by isomorphism with the 

derivative of 𝐶1 and 𝐶∞ class functions. 

It allows to extend the derivation of  𝐶1(𝛺) class elements. 

Whenever we will talk about distributions in the following, it will be within the meaning of the definition 2.6. 
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III. ITO FORMULA 

Let us first define some concepts of stochastic processes that will help us to establish the Ito formula. 

Definition 3.1 (Filtration, [1]) 

Let (Ω, ℱ,ℙ) be a probabilized space. A filtration (ℱ𝑡)𝑡∈ℝ+  is the growing family of subtribes of ℱ

 

 (ℱ0 ,...,ℱ𝑇)   such that for any 

𝑡 ≤ 𝑠, ℱ𝑡 ≤ ℱ𝑠. 

 

 Definition 3.2 (adapted process, [5], [11]) 

Let (ℱ𝑡)𝑡∈ℝ+ a filtration. A process (𝑋𝑡)𝑡∈ℝ+  is adapted if for any 𝑡, 𝑋𝑡 is ℱ𝑡 – mesurable. 

Definition 3.3 (Martingale, [6],[8]) 

Let (Ω, ℱ,ℙ) a probabilised space and  (ℱ𝑡)𝑡∈ℝ+ filtration of this space an adapted collection (𝑀𝑡)𝑡∈ℝ+ of integrables random 

variables (verifying 𝔼( ⎸𝑀𝑡⎸) < +∞, for any 𝑡) is a martingale if,  

∀𝑠 ≤ 𝑡, 𝔼(𝑀𝑡|ℱ𝑡) = 𝑀𝑠. 

 

Definition 3.4 (Semi-martingale, [7]) 

A stochastic process  ( 𝑋𝑡)𝑡∈ℝ+  is a semi-martingale if 𝑋𝑡 can be written in the form 𝑋0 + 𝑀𝑡 + 𝐴𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝑀0 = 𝐴0 = 0, 𝑀𝑡 is a 

martingale and 𝐴𝑡 is an adapted process. 

 

Definition 3.5 (Brownian motion, [12])  

A stochastic process  ( 𝑋𝑡)𝑡∈ℝ+ is a Brownian motion if  ( 𝑋𝑡)𝑡∈ℝ+ has an independent and stationary increments. It means that 

 If 0 ≤ 𝑠 ≤ 𝑡,  𝑋𝑡 −  𝑋𝑠 is independent of the tribe 
 
ℱ𝑠 = 𝜎( 𝑋𝑢, 𝑢 ≤ 𝑠) : Independence of increments, 

 If 0 ≤ 𝑠 ≤ 𝑡,  𝑋𝑡 −  𝑋𝑠  is identical to 𝑋𝑡−𝑠 −  𝑋𝑠 increments are stationary, 

 ∀ 𝜔 ∈ Ω the relation s →  𝑋s(𝜔) is a function : continuity of trajectories. 

 

Theorem 3.1 (Ito formula, [13], [1]) 

All function 𝑓 ∈ 𝐶2(ℝ) with second derivatives verifies: 

𝑓( 𝑋𝑡) = 𝑓 ( 𝑋0) + ∫ 𝑓′( 𝑋𝑠)𝑑𝑋𝑠  

𝑡

0

+
1

2
 ∫ 𝑓′′( 𝑋𝑠)

𝑡

0

𝑑𝑠 

∀𝑡 ≤T, where 𝑋𝑡 is a stochastic process. 

 

 Proof. See [13] 

 

IV. GENERALIZATION OF THE ITO FORMULA 

Apart integrability conditions, the formula (1) cannot be applied while the 𝑓 function doesn’t belong to 𝐶2 class; let us suggest his 

generalization in the following manner: 

Let us keep his stochastic process (Brownian motion) but let us relax differentiability hypothesis upon 𝑓 function. 

This kind of extension is given by Tanaka’s formula. In ℝ, the Tanaka’s formula is the Ito formula in which 𝑓(𝑥) = |𝑥|, that is not 

in 𝐶2 class. Let us denote that 𝑓 is 𝐶2 class function in the complementary of open set of nul measure {0}, and his second derivative 

in distributions term is a measure. That means we would establish an Ito formula in which the last part must be interpreted.  

For this, let us announce the following theorem: 

Theorem 4.1 (Tanaka’s Formula, [2]) 

Let 𝑋 be a continuous semi martingale. It exists (𝐿𝑡
𝛼)𝑡≥0 , 𝛼 ∈ ℝ, a crescent continuous process called local time in 𝛼 of the semi 

martingale 𝑋, such that : 

(𝑋𝑡 − 𝛼)+ = (𝑋0 − 𝛼)+ + ∫ 1{𝑋𝑠>𝛼}

1

0

𝑑𝑋𝑠 +
1

2
𝐿𝑡

𝛼 , 

(𝑋𝑡 − 𝛼)− = (𝑋0 − 𝑎)− − ∫ 1{𝑋𝑠≤𝛼}

1

0

𝑑𝑋𝑠 +
1

2
𝐿𝑡

𝛼 

and  

|𝑋𝑡 − 𝛼| = |𝑋0 − 𝛼| + ∫ 𝑠𝑔𝑛
1

0
(𝑋𝑠 − 𝛼)𝑑𝑋𝑠 + 𝐿𝑡

𝛼  ;  (2) 

where 𝑠𝑔𝑛(𝑥) =  −1 𝑜𝑟 1  𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑥 ≤ 0 𝑜𝑟 𝑥 > 0. 
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And more, the measure (of stieljes) 𝑑𝐿𝑡
𝛼  associed to  𝐿𝑡

𝛼 is carried by {𝑡 ∈ ℝ: 𝑋𝑡 = 𝛼}. 

 

Proof. 

Let us consider 𝜑 a convex and continuous function. Though 𝜑 is not in 𝐶2 class, let us try to write a Ito formula for (𝑋𝑡) . 

Let 𝑗 be a positive 𝐶∞ class function with compact support includes in ]−∞, 0] such that ∫ 𝑗(𝑦)𝑑𝑦 = 1
0

−∞
, Let us assume that 

𝜑𝑛(𝑥) = 𝑛 ∫ 𝜑(𝑥 + 𝑦)𝑗(𝑛𝑦)𝑑𝑦
0

−∞

 . 

As 𝜑 convex and locally bounded, 𝜑𝑛 is well defined. And more 𝜑𝑛 is in 𝐶∞ class and just converges on 𝜑 and 𝜑𝑛
′  grows towards 𝜑−

′ , 

left derivative of 𝜑. By applying Ito formula to the function we get  

𝜑𝑛(𝑋𝑡) = 𝜑𝑛(𝑋0) + ∫ 𝜑𝑛
′ (𝑋𝑠)

𝑡

0
𝑑𝑋𝑠 +

1

2
𝐴𝑡

𝜑𝑛                         (3) 

where   𝐴𝑡
𝜑𝑛 = ∫ 𝜑𝑛

′′(𝑋𝑠)𝑑〈𝑋, 𝑋〉𝑠
𝑡

0
 , 

we have    lim
𝑛→+∞

𝜑𝑛(𝑋𝑡)=𝜑(𝑋𝑡) et   lim
𝑛→+∞

𝜑𝑛(𝑋0)=𝜑(𝑋0). 

We can assume that 𝑋 et 𝜑𝑛
′ (𝑋𝑠) are bounded (uniformly in 𝑛 because  𝜑1

′ ≤ 𝜑𝑛
′ ≤  𝜑−

′  ). 

By the dominated convergence theorem of the stochastic integrals, we have: 

∫ 𝜑𝑛
′ (𝑋𝑠)

𝑡

0

𝑑𝑋𝑠  
ℙ
→ ∫ 𝜑−

′ (𝑋𝑠)
𝑡

0

𝑑𝑋𝑠 

uniformly on compacts. Therefore, 𝐴𝜑𝑛 converges towards a crescent process 𝐴𝜑 because it is a limit of crescent processes. By 

going to the limit (3), it happens this 

𝜑(𝑋𝑡) = 𝜑(𝑋0) + ∫ 𝜑−
′𝑡

0
(𝑋𝑠)𝑑𝑋𝑠 +

1

2
𝐴𝑡

𝜑
   ,                  (4) 

so, the process 𝐴𝜑 can be chosen continuous (because it is a difference of continuous processes). Let us apply (4) to 𝜑(𝑥) =
(𝑥 − 𝛼)+ a convex function with left derivative 𝜑−

′ = 1]𝛼,+∞[. It exists a crescent process 𝐴+ such that 

                     (𝑋𝑡 − 𝛼)+ = (𝑋0 − 𝛼)+ + ∫ 1{𝑋𝑠>𝛼}𝑑𝑋𝑠 +
1

2
𝐴𝑡

+𝑡

0
 .               (5) 

In the same manner with 𝜑(𝑥) = (𝑥 − 𝑎)− convex function of left derivative 𝜑−
′ = −1]−∞,𝛼], it exists a crescent process 𝐴− such 

that 

(𝑋𝑡 − 𝛼)− = (𝑋0 − 𝛼)− − ∫ 1{𝑋𝑠≤𝛼}𝑑𝑋𝑠 +
1

2
𝐴𝑡

−𝑡

0
  .    (6) 

As 𝑥 = 𝑥+ − 𝑥−, we get from de difference between (5) and (6) : 

𝑋𝑡 = 𝑋0 + ∫ 𝑑𝑋𝑠 +
1

2
(𝐴𝑡

+ − 𝐴𝑡
−𝑡

0
)  .                              (7) 

It happens that 𝐴+ = 𝐴− and we then pose 𝐿𝑡
𝛼 = 𝐴𝑡

+. 

By adding, as |𝑥| = 𝑥+ + 𝑥−, we have  

|𝑋𝑡 − 𝛼| = |𝑋0 − 𝛼| + ∫ 𝑠𝑔𝑛(𝑋𝑠 − 𝛼)
𝑡

0
𝑑𝑥𝑠 + 𝐿𝑡

𝛼 .                 (8) 

For the last part, by applying the Ito formula to the semi-martingale |𝑋𝑡 − 𝛼|  with (𝑥) = 𝑥2 ; we also get by using (7) : 

|𝑋𝑡 − 𝛼|2 = |𝑋0 − 𝛼|2 ∫ |𝑋𝑠 − 𝛼|𝑑(|𝑋𝑠 − 𝛼|)𝑠
𝑡

0
  

                   = (𝑋0 − 𝛼)2 + 2 ∫ |𝑋𝑠 − 𝛼|
𝑡

0
 𝑠𝑔𝑛(𝑋𝑠 − 𝛼)𝑑𝑋𝑠 + 2 ∫ |𝑋𝑠 − 𝛼|

𝑡

0
𝑑𝐿𝑠

𝛼 + 〈𝑋, 𝑋〉𝑠 ; 

by comparing with the Ito formula for 𝑥 with 𝑓(𝑥) = (𝑥 − 𝛼)2,  we have : 

(𝑋𝑡 − 𝛼)2 = (𝑋0 − 𝛼)2 + 2 ∫ (𝑋𝑠 − 𝛼)𝑑𝑋𝑠 + 〈𝑋, 𝑋〉𝑠

𝑡

0

 . 

We get ∫ |𝑋𝑠 − 𝛼|
𝑡

0
𝑑𝐿𝑠

𝛼 = 0, which provides the desired result. 
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Theorem 4.2 (Ito-Tanaka Formula, [2]) 

When 𝜑: ℝ → ℝ is a convex function, it is quite possible to specify (4). 

Let us show that : 

𝐴𝑡
𝜑

= 2 ∫ 𝐿𝑡
𝛼𝜑′′(𝑑𝛼)

+∞

−∞
 . 

Where 𝜑′′(𝑑𝛼) is the measure associated to 𝜑′′ (in distributions term). Then, we have the Ito-Tanaka formula for the convex 

function: 

𝜑(𝑋𝑡) = 𝜑(𝑋0) + ∫ 𝜑−
′ (𝑋𝑠)𝑑𝑋𝑠 + ∫ 𝐿𝑡

𝛼𝜑′′(𝑑𝛼)
+∞

−∞

𝑡

0
 .   (9) 

The same problem can be reformulated in ℝ𝑛 like this: 

Given an opened set 𝑂, a 𝐶2 class function 𝑓 in 𝑂 whose laplacian (second derivative in distributions term) is a measure, can we 

establish an Ito-Tanaka formula for 𝑓 ? 

R.K. Getoor and M.J. Sharpe in [15], tried to resolve this problem but with lightly larger conditions; N.V. Krylov has treated the 

same problem with 𝑓 function belonging to sobolev space [9]; and G. Brosamler in [3], has also dealt with this problem in 1970. 

We are using Brosamler’s work to finally conclude. 

Theorem 4.3 (Brosamler’s Theorem, [3]) 

Let 𝑂 be an opened set of ℝ𝑛, let (𝑋𝑡) be a bownian motion in ℝ𝑛, let 𝜉 the meeting time in the complementary of 𝑂. Let 𝑓 be a 

locally summable function in 𝑂, in which the laplacian in distributions term is a measure : 

1

2
 ∆𝑓 = 𝜇  . 

As to modify in a null measure set; 𝑓 derivatives in distributions term are locally summable functions in 𝑂. 

𝐷𝑖𝑓 = 𝑗𝑖 , 𝑖 = 1,2, … , 𝑛 

and we have ∫ 𝑗𝑖2 𝑜
𝑡

0
𝑋𝑠𝑑𝑠 < ∞.  

 𝐹𝑜𝑟  𝑡 < 𝜉 ,    𝑓(𝑋𝑡) = 𝑓(𝑋0) + ∑ ∫ 𝑗𝑖(𝑋𝑠)𝑑𝑥𝑠
𝑖 + 𝐴𝑡

𝑡

0
𝑛
1      (10) 

Where (𝐴𝑡) is an adapted process defined on [0,𝜉[, whose tragectories are null in 𝑂, continuous and locally with bounded variation 

on [0,𝜉[,  and it is the functional associated to 𝜇.  

In particular, if  
1

2
∆𝑓 is a locally summable function in 𝑂, we have : 

∫ |∆𝑓𝑜𝑋𝑠|𝑑𝑠 < ∞  𝑝. 𝑠  (𝑡 < 𝜉)
𝑡

0

 𝑎𝑛𝑑 

𝐴𝑡 =
1

2
∫ ∆𝑓(𝑋𝑠)𝑑𝑠

𝑡

0

. 

V. CONCLUSION 

Indeed, in this paper, we are essentially based on Brosamler’s theorem, developed in [3] where the author works consisted to prove 

the existence of a quadratic variation of stochastic processes 𝑓(𝑥) in which 𝑋 is a Brownian motion and 𝑓 a harmonic function. 

The equation (9), called Ito-Tanaka formula is an important result in the generalization of Ito formula in ℝ set where the last part 

𝐿𝑡
𝛼  is a continue crescent process called local time in 𝛼′′ of the Brownian motion 𝑋; and in (10) that is the Ito formula generalized 

in ℝ𝑛 in which the last part 𝐴𝑡 is a crescent process, whose trajectories are locally bounded in an ℝ𝑛 opened set, and so, the 

functional associated to the measure 𝜇 =
1

2
∆𝑓.  

Perspective studies can use the generalized Ito formula, in the financial context of partial derivatives of Black-Scholes by bringing 

it back into spaces that can facilitate his resolution. 
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