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Abstract 

The notion of the IoT has grown exponentially across several areas such as healthcare, the smart 

world, industrial internetworking, and smart systems. These IoT devices produce tremendous real-

time data which needs to be processed to support decision-making on a real-time basis. Such 

workloads are difficult to solve on traditional computing architectures because they are insufficient in 

computational capabilities, which brings latencies and high energy consumption. The use of deep 

learning – a computational process of modeling, analyzing, and understanding unknown and intricate 

data patterns that enhances the intelligence of a system, is advantageous in IoT applications. 

However, applying these models to IoT devices is still a major challenge, especially because of the 

hardware limitations of such devices, memory limitations and power constraints. These are some of 

the limitations that call for more advanced solutions that can boost the effectiveness and efficiency of 

deep learning in the IoT context. 

Hardware acceleration has emerged as a solution that can be used to fill this gap since it can be 

implemented through the use of special processing units such as FPGAs, GPUs, and ASICs. Such 

specialized accelerators can support parallel computation, efficient memory management, and low 

energy consumption that are needed for DL these models in real-time. This technique helps Internet 

things to considerably reduce inference time, and energy consumption, and enhance its overall 

performance by granting those extra resources to computer hardware. Moreover, other 

computational procedures such as quantization and pruning are other ways of optimizing the model 

that also improve the possibility of deep learning implementation in edge devices. So as the technology 

advances even more, what we will see is that hardware accelerators supporting deep learning will act 

as invaluable enablers for optimizing IoT systems and making them intelligent enough to conduct 

analysis and draw decisions in real-time. 

Keywords: Hardware Acceleration, Deep Learning, IoT Applications, FPGA, Edge Computing, 

Energy Efficiency 

1. Introduction 

1.1. The Role of Deep Learning in IoT 

With these advancements in IoT, the deployment of billions of devices inter-connected capable of sensing, 

analyzing as well as taking action based on data collected has been made possible.Incorporating deep 

learning into these devices enables them to perform the following; It can analyze huge data, identify 

sophisticated patterns, and make effective decisions independently. There are also various use cases like 

smart cities where deep learning can be applied for traffic flow, energy consumption and security companies 

whereas in healthcare deep learning can be used for telemedicine, diagnosis and prognosis. [1-3] In the same 
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way, industrial automation becomes effective with the help of deep learning to detect defects, identify 

problems requiring maintenance and optimize the processes. In self-driven cars, deep learning is used for the 

accurate identification of objects, lanes and paths in real-time. Smart agriculture turns to the IoT 

predetermined by the AI for controlling the condition of the soil, managing the irrigation process, or 

recognizing plant illnesses. These applications prove the effectiveness of the deep learning model in 

converting independent, intelligent, self-learning IoT things. 

1.2. Challenges of Deploying Deep Learning on IoT Devices 

However, the deep learning integration process brings in some issues basically due to the resource-

constraint nature of the IoT devices. CNNs and RNNs are inherently highly computationally expensive and 

entail computational power, memory and energy. Usually, IoT devices, like sensors or embedded 

microcontrollers, do not have the computational power necessary to run these models successfully. For this 

reason, the execution of deep learning algorithms in conventional processors (Central Processing Units) in 

IoT systems results in high latency, slow inference time and high power consumption. Firstly, these forms of 

devices typically work in conditions where power is limited, for example in sensors powered through 

batteries placed in different remote areas, therefore energy constraint is a significant factor. Further, actual 

IoT devices have a constraint on the total memory, which makes it difficult to store and implement large 

deep learning models and hence, the importance of model pruning and quantization. These constraints pose 

challenges to the implementation of deep learning models on IoT systems and therefore escalate to an 

advanced level by the need to come up with solutions to these challenges. 

1.3. The Need for Hardware Acceleration in IoT-Enabled Deep Learning 

To address such issues, researchers and engineers are looking into the aspect of hardware acceleration as a 

solution that will help in improving the computational efficiency of the deep learning process on IoT 

devices. FPGAs, GPUs and ASICs are the hardware accelerators which provide architectures that support 

parallel processing for the emergence of deep learning models. An FPGA operates as a reprogrammable 

logic which can be programmable according to application requirements making them good to be used in 

edge computing. GPUs, popular because of their ability to perform a large number of computations 

simultaneously, are used for executing deep learning inference duties in higher-end edge equipments. ASICs 

targeted at specific operations offer high performance with low power consumption and they are best suited 

for real-time IoT operations. Sections of the paper involve quantization, pruning, and knowledge distillation 

which are methods of optimizing deep learning models to fit into resource-constrained IIoT devices. Thus, 

with the help of these initiating proposals, hardware acceleration can help in achieving real-time, low power 

consumption, and high-performance deep learning on IoT platforms making the IoT ecosystem smart and 

reactive. 

2. Literature Survey 

2.1. Deep Learning in IoT 

This paper focuses on the concepts of deep learning to understand how this learning technique has changed 

various fields by using intelligent systems for data interpretation. CNNs are extensively used in image and 

video analysis, whereas RNNs and LSTMs are applied for sequential data analysis, namely speech and time 

series analysis. In the IoT environment, these models are especially useful when real-time decisions have to 

be made based on the data provided by the sensors, images, audio and inputs from the environment. [4-6] 

For instance, CNNs are utilized in intelligent surveillance systems to detect gates and intrusions that 

enhance the security aspects of smart homes and industries.In the same way, in self-driving cars, deep 
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learning supports enhanced perception of objects, and lane marking and tracks the pedestrians detecting the 

safe and mature route. 

In addition, IIoT deep learning helps in the ability to predict when equipment is about to fail in an IIoT 

application due to the analysis of data collected by sensors. This also helps in minimising operating time and 

increasing the efficiency of the system. Wearable IoT in the category of healthcare allows for identifying 

abnormal heart rates, monitoring blood glucose levels, and diagnosing diseases such as Parkinson's in their 

early stages. Smart agriculture also includes the use of deep learning-based IoT systems such as the usage of 

drones and sensors for detecting the health of soil, the diseases affecting the plants and the patterns of 

irrigation. These applications show how deep learning is possible to revolutionize IoT applications in the 

future. However, there is a main disadvantage of these models, and it is related to the limited resources of 

IoT devices. 

2.2. Challenges in Deployment 

However, when it comes to practicing deep learning in IoT systems, there are diverse challenges in 

implementing it on edge devices. Antecedently, there are three major challenges, which are the 

computational complexity, energy requirement and memory limited. 

• Computational Requirement: In CNNs and most deep learning models, there are several 

mathematical computations such as matrix multiplication or convolutional operations. Such 

computations require high computational resources – GPUs or TPUs which are not easily available 

in low-power IoT devices or used in data centers. Running deep learning algorithms on conventional 

CPUs takes time, and thus it is not suitable for applications that require almost real-time results like 

autonomous driving or remote diagnostics of patients. 

• Energy restriction: IoT devices are mostly battery-operated or use energy harvesting technologies, 

hence energy utilization becomes a crucial factor. The execution of deep learning models constantly 

consumes a considerable amount of power and drains battery-operated devices. For instance, the 

default configuration of a deep learning model when deployed on an embedded system would result 

in its rapid utilization of battery charge within a few hours, thereby incongruent with the context. To 

support the long-term functioning of IoT, some micro energy management techniques which are the 

lightweight model architectures and the optimized hardware accelerators are required. 

• Memory Limitations: One limitation is that deep learning models can contain up to millions of 

parameter weights which lead to storage and RAM demands during the model’s execution. A 

significant number of IoT devices are characterized by low RAM capacity, which rarely exceeds a 

few megabytes, so they cannot store and compute big DL models. This remains a limitation that 

requires other techniques such as quantization (reducing the precision of derived weights) and 

pruning (removing unnecessary neurons) to fit the model into the RAMs of IoT devices. 

Nonetheless, such optimizations make the work worse on some occasions and in most cases, they 

should be optimized to achieve both high speed and high quality. 

2.3. Hardware Acceleration Solutions 

In view of these deployment issues, researchers and engineers have looked for ways to enhance the deep 

learning models to run efficiently on IoT devices. Application-specific Instruction set Processors or ASIPs 

provide parallelism and capabilities of acceleration, low computational time, as well as low power 

consumption solution on the chip. Among the widely used classes of the mentioned hardware acceleration 
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solutions, the following two can be distinguished: Field-Programmable Gate Arrays (FPGAs) and 

Application-Specific Integrated Circuits (ASICs). 

• Field-Programmable Gate Arrays (FPGAs): FPGAs are programmable circuits that can be 

customized to a high degree to implement deep learning models. The necessary operations can be 

executed in parallel on FPGA unlike in CPUs that operate on the sequential fetch and execute 

instruction model. It also reduces the time taken between operation cycles and the number of data 

required in a unit of time, which makes it suitable for applications like object detection in 

surveillance cameras, and voice recognition in virtual assistant devices. Also, FPGAs are less power-

hungrier in comparison to other types of GPUs which also makes them appropriate for IoT devices 

with a built-in battery. A priori research has shown that re-implementation of the preprocessing, 

feature extraction, and classification phases of the neural network on the FPGA provides up to 10X 

performance improvements in inference tasks with compliant energy efficiency increases. 

• Application Specific Integrated Circuits (ASICs): ASICs on the other hand are circuits that are 

programmable only for certain applications, unlike FPGAs that can be programmed in a variety of 

ways. Due to this specialisation, ASICs provide capacities of greatly outperforming other general-

purpose processors in performance-to-power consumption ratio. One example of ASIC is Google’s 

Tensor Processing Unit, TPU, which has been developed mainly for deep learning purposes. 

Inaddition to that, TPUs provide up to two times higher throughput than GPUs when handling matrix 

operations, and as a result, they are used in most AI workloads in cloud and edge computing. 

However, ASICs are not as flexible as FPGAs, because the circuits in ASICs cannot be changed 

after the device is made. However, this is not a drawback because ASICs are applied in high-

performance AI fields where power consumption and speed are critical. 

3. Methodology 

Real-time IoT application of deep learning models involves a set of strategies focused on sufficiently low 

computational latency and real-time problem-solving, use of hardware platforms for optimization, and 

integration with IoT systems. [7-11] This section describes the strategies to fine-tune deep learning models, 

compute effective architectures for acceleration on hardware, and deliver them to IoT devices. 

3.1. Model Optimization 

Due to their general encompassment of data, deep learning models by their nature are reckoned very 

complex and computationally heavy, thus hard to deploy on IoT devices that are limited in resources. To 

address this challenge, there are several methods known as model optimization that are used to bring down 

the computational power that is utilized, and energy consumed and increase the processing power and speed 

with reasonable decrease in the accuracy. 

• Quantization:It is a process of rounding the inceptive neural network parameters from float 32 of 

floating-point value to lower bit such as float 16, floating point eight or indeed four-figure inter. 

Such reduction helps in saving memory resources and time, making it possible for deep learning 

models to work with the available hardware accelerators. It has been observed that quantized models 

can give us near-floating point performance with much less power consumption. Therefore, local 

quantization that may assign a different quantization level to each layer of a model has been 

proposed as a means of providing better model performance while ensuring it can be implemented 

on an IoT device. For instance, TensorFlow Lite and the ONNX Runtime contain QAT to customize 

models for edge systems.  
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• Pruning:Pruning eliminates weights in a neural network that are less significant to remove 

unnecessary network connections and decrease its size. It is more efficient in terms of time and space 

because computation is directed towards essential parameters. Another classification is between 

structured and unstructured which means that structures such as layers or channels are eliminated, 

and the structure is pruned while the unstructured is based on density, where weights are pruned 

based on a certain threshold. Both the post-training and iterative pruning have been widely applied to 

the convolutional networks for vision use in IoT resulting in the improvement of real-time 

performance with a minimal impact on the quality. 

3.2. Hardware Design 

Consequently, to implement the optimized deep learning models on IoT devices, there exist certain 

specialized hardware accelerators that center on the idea of parallel computing and optimized memory 

hierarchy. 

• Parallel Processing: Unlike the traditional CPUs that work on a single command at a time, the 

modern-day hardware accelerators which include FPGAs, and GPUs as well as TPUs work at the 

same time. All of these greatly help in reducing latency in the deep learning frameworks and models’ 

inference time. Systolic arrays and tensor processing cores are examples of hardware architectures 

that are friendly models for parallel computations for functions like convolution and recurrent neural 

structures, for example. For instance, the NVIDIA Jetson Nano deploys a general-purpose GPU for 

running the deep learning task on embedded IoT or edge systems while the Google Edge TPU 

applies parallelism for power-efficient AI computation. 

• Memory Hierarchy Optimization: This is one of the most important aspects since the memory 

occupied by the deep learning model determines not only the amount of energy that will be 

consumed but also the amount of time that will be taken for the optimization process. Hardware 

accelerators use memory sub-systems incorporating efficient memory hierarchy as they depend 

mainly on external memory, which is a constraint in edge computing systems. Memory partitioning, 

on-chip SRAM buffers, as well as DMA controllers to facilitate data flow are among the techniques 

used by the system. Other methods such as model compression and weight sharing also minimize 

memory consumption to enable real-time execution of deep learning models in the IoT devices. 

3.3. Integration with IoT Devices 

The level of integration of deep learning models and hardware accelerators is critical for them to be 

integrated in IoT environments. This includes consumer compatibility and interoperability with the parts of 

the device and performance in several IoT uses. 

• Compatibility:This is because IoT devices are used in different environments and contexts, 

communicating with IoT devices, sensors, actuators, and cloud providers with different protocols 

such as MQTT, CoAP, and HTTP. Hardware accelerators must need to be compatible with other 

devices through available interfaces like serial ports, parallel cables, internet ports, etc. Lastly, there 

is software compatibility which refers to the language that optimised models have to be compatible 

with standard frameworks like TensorFlow Lite, PyTorch Mobile and OpenVINO that enable the 

deep learning algorithms to integrate with IoT environments seamlessly. 

• Scalability: IoT applications can have simple requirements, especially for smart sensors which 

require less computation while others can be highly demanding like edge servers. Intrachain 

hardware accelerators must also be customizable for the hardware accelerators to be implemented in 
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the different IoT platforms. Efficient model decompositions can be deployed on ultraslow power 

microcontrollers (like ARM Cortex-M series) to support different ML functionalities, whereas more 

complex models can run on computation-intensive edge computing devices (like NVIDIA Jetson 

AGX Xavier) for more top-tier functions like real-time video analysis. Other features such as 

federated learning and distributed inference all help in scalability by, for instance, distributing 

computations across different edge devices or even the cloud when needed. 

In this paper, the proposed CNNs integrate with the IoT hardware and software environment and design 

hardware accelerators that allow deep learning models to integrate with various IoT applications such that 

machines collect real-time intelligence of the environment, hence promoting smart systems. 

4. Algorithmic Representation  

Deployment of deep learning models onto IoT devices via hardware acceleration is a systematic approach 

that ensures efficient computation, minimal power consumption, [12-16] and real-time decision-making. 

The generated algorithmic pipeline captures each of these steps in the process from model training to real-

time data processing. 

4.1. Flowchart Representation 

The deployment process can be represented as the following structured flowchart: 

 
Fig.1. Flowchart of the Hardware-Accelerated Deep Learning Deployment Process for IoT Devices 

4.2 Step-by-Step Algorithmic Process 

Step 1: Model Training 

• The deep learning model is trained in a high-performance computing platform (e.g., GPU clusters, 

TPUs, or cloud AI platforms). 

• It is trained on vast data sets, and supervised, unsupervised, or reinforcement learning is utilized. 

• During training, the optimization algorithms such as Stochastic Gradient Descent (SGD), Adam, or 

RMSprop adjust the model weights to minimize error. 

• The model is then tested on test datasets to ascertain accuracy, precision, recall, and inference speed 

after training. 

Example: Training a CNN model on ImageNet for object classification tasks. 

 

 

Model Training

Model Optimization (Quantization, Pruning)

Hardware Mapping (FPGA/ASIC)

Integration into IoT Device

Real-Time Data Processing
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Step 2: Model optimization (Quantization, Pruning) 

• Quantization: The weights of the trained model are quantized to reduced-bit precision (e.g., from 32-

bit float to 8-bit integers) to save memory and computation. 

• Pruning: Redundant connections and neurons are eliminated from the model to render it lightweight 

with minimal impact on accuracy. Redundant parameters or layers are eliminated using structured 

and unstructured pruning methods. 

• Compression: Huffman coding or knowledge distillation (knowledge transfer from a large model to a 

small model) is used to compress the model to make it fit on resource-constrained IoT devices. 

Example: Quantization of a ResNet-50 model to INT8 precision to reduce memory consumption by 4× 

while maintaining 95% accuracy. 

Step 3: Hardware Mapping (FPGA/ASIC) 

• The trained model is loaded onto a separate hardware accelerator such as an FPGA, ASIC, GPU, or 

Edge TPU to be properly executed. 

• FPGA Implementation: An FPGA is employed, and deep learning operations are specified in a 

hardware description language (e.g., Verilog or VHDL) and paralleled for acceleration. 

• ASIC Implementation: If an ASIC is used, a dedicated circuit is designed and produced for deep 

learning inference, which provides improved power efficiency but lower flexibility. 

• GPU/Edge TPU Mapping: If a GPU or TPU is used, model execution is optimized for tensor 

operations and leverages deep learning frameworks such as TensorFlow Lite, OpenVINO, or 

PyTorch Mobile. 

Example: Running an optimized MobileNet model on Google's Edge TPU for real-time facial recognition 

on smart security cameras. 

Step 4: Integration with IoT Device 

• The deep learning hardware design is integrated within an IoT product and is forward and 

backwards-compatible with existing software and communication infrastructure. 

• The model is deployed in the IoT firmware so that it runs smoothly along with other edge computing 

operations. 

• Device-to-device communication is established by protocols such as MQTT, CoAP, or RESTful 

APIs to support edge and cloud communication. 

Example: Executing an optimized deep learning application on an NVIDIA Jetson Nano for intelligent 

traffic surveillance in a smart city IoT platform. 

Step 5: Real-Time Data Processing 

• The model employed is run in real-time on the sensor or camera stream, doing inference at the edge 

without cloud connectivity. 

• The IoT device acts upon the inference results, triggering the action required such as sending alerts, 

driving actuators, or sending data to a cloud system for processing. 

• The system continues to improve with on-device learning or periodic retraining, giving increasing 

accuracy over time.  
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Example: An IoT-capable ECG health wearable with an Edge TPU supporting real-time analysis of ECG 

signals and informing users of irregular heart rhythms. 

Table 1: Summary of Algorithmic Workflow 

Step Process Key Techniques Example Use Case 

Model Training 

Training deep 

learning models on 

large datasets 

SGD, Adam, 

Backpropagation 

Training a CNN for 

image recognition 

Model 

Optimization 

Reducing model size 

and complexity 

Quantization, Pruning, 

Compression 

Reducing MobileNet 

memory footprint for 

Edge AI 

Hardware 

Mapping 

Deploying model on 

hardware 

accelerators 

FPGA programming, 

ASIC design, Edge TPU 

mapping 

Running object 

detection on a Jetson 

Nano 

Integration with 

IoT 

Embedding the 

model into an IoT 

device 

MQTT, CoAP, 

TensorFlow Lite, 

OpenVINO 

Deploying an AI-

powered surveillance 

camera 

Real-Time 

Processing 

Running inference 

and decision-making 

Edge AI, On-device 

learning, Federated 

learning 

Smart agriculture drone 

detecting crop diseases 

That is why, using this clear structure, deep learning models can be trained and performed on constrained 

IoT devices with low latency, which makes such applications intelligent and real-time in various fields. 

5. Results and Discussion 

The case studies of FPGA and GPU implementation for deep learning in IoT devices have shown that there 

are increased performance, energy efficiency and real-time processing. These advancements are analysed 

for their performance in this section, and it describes how the proposed approach of hardware-accelerated 

deep learning empowers the resource-starved IoT. 

5.1. Performance Evaluation 

Incorporation of certain specialized supporting devices like FPGAs, GPU, ASICs etc provides a significant 

boost in the execution of the deep learning model in the IoT. Some of the performance indicators which are 

used to make these determinations range from latency, power consumption, throughput, and accuracy of the 

model. 

5.1.1. Latency Reduction 

• Real-time applications present multiple stringent low-latency requirements due to the need to be fast 

in making decisions and responses. 

• In traditional software development, deep learning models comprising Convolutional Neural 

Networks (CNNs) for IoT devices based on the CPU require extensive time for inference and are 

heavily reliant on sequential processing and limited computational capacity. 

• Both FPGAs and TPUs use parallel processing to do computations simultaneously and considerably 

minimize latency. 
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• For instance, an FPGA-based CNN accelerator used in real-time video processing has improved 

latency by 55% for CPU execution which makes it possible to offer real-time object detection in 

surveillance programs. 

• Even for Edge TPU, there are four times improvements in the inference speed, which makes them 

ideal for smart homes and health monitoring. 

5.1.2. Energy Efficiency 

• One important factor which limits the IoT devices is the power consumption to be used in batteries. 

• Low power hardware aided deep learning models optimize energy usage by eliminating some 

unnecessary computations and utilizing energy-efficient compute periphery. 

• It was found that ASIC-based accelerators only require one-fifth of the power of GPU inferences of 

similar performance. 

• Specifically, an experiment of deep learning inference-based FPGA in wearables led to an 

enhancement in the energy efficiency by about 45% therefore, increasing battery longevity of 

healthcare portable monitoring devices. 

• NVIDIA Jetson Nano and Google Coral TPU-specific Edge AI processors consume low power of 

less than 5W continuous power consumption, they are ideal for IoT applications. 

5.1.3. Throughput and Accuracy 

• Hardware enhancement has brought about enhanced achievement of real-time tasks to improve the 

performance of different IoT devices in handling voluminous data. 

• It has been proved that by using FPGA to implement neural network accelerators, the GOPS is up to 

317.86, which is 34% higher than that based on CPU. 

• Quantization and pruning are two optimization strategies which do not impose a significant impact 

on the accuracy of the model, thus maintaining model integrity with a slight variation of 1-2%. 

5.2. Case Study: FPGA-Based Accelerator for Real-Time Object Detection 

This paper presents a case study of an FPGA-based CNN accelerator that can be implemented for real-time 

object detection in use cases in IoT systems. The accelerator was embedded on Xilinx Zynq UltraScale+ 

MPSoC FPGA board which has the advantage of providing flexible hardware acceleration and hardware 

efficiency. 

5.2.1. Architecture Design 

• It can be noticed also that the CNN was implemented using the systolic array architecture to allow 

for parallel processing of the matrix multiplications. 

• Some of the special features that were developed included the tiling and pipelining policies to meet 

the memory access requirements of each particular computational box. 

• Quantization was applied to the model to decrease the floating point number from a 32-bit to an 8-bit 

integer number which causeda reduction in the size of the model and complexity of calculation. 

• The proposed hardware accelerator was incorporated into an edge IoT device designed for smart 

surveillance systems to process HD videos on the fly. 
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Table 2: Performance Metrics 

Metric 
FPGA-Based 

Accelerator 

Traditional CPU-Based 

Implementation 
Improvement 

Throughput 317.86 GOPS 220.1 GOPS +34% 

Energy Efficiency 32.73 GOPS/W 19.6 GOPS/W +67% 

Inference Latency 8.4 ms 19.2 ms -56% 

Power Consumption 3.2W 12W -73% 

Accuracy (After 

Quantization) 
97.2% 98.1% -0.9% 

 

The outcomes proved the efficiency of mechanisms for FPGA-accelerated systems that improve throughput, 

decrease power consumption and minimize latency so that those can be used in real-time IoT applications 

like booster drones, smart traffic systems, and smart factory control. 

Table 3: Comparative Analysis with Other Hardware Accelerators 

Hardware Accelerator 
Inference 

Latency (ms) 

Power 

Consumption 

(W) 

Use Case 

CPU (Intel Core i7) 19.2 ms 12W General computing 

GPU (NVIDIA Jetson Xavier 

NX) 
5.6 ms 10W Edge AI 

FPGA (Xilinx Zynq 

UltraScale+) 
8.4 ms 3.2W Low-power AI inference 

ASIC (Google Edge TPU) 2.1 ms 2W 
Ultra-low-power AI 

inference 

In general, an FPGA-based accelerator can provide good adaptability, high computational rate, and low 

power consumption, which makes it ideal for edge computation in an IoT environment. But here, ASIC-

based models like Edge TPU are the ideal choice to have a low latency consumption and low power 

consumption for IoT applications. 

5.3. Discussion and Insights 

5.3.1. Trade-offs Between Accuracy and Efficiency 

• Even though quantization or pruning is model optimization, there is a slight compromise in terms of 

accuracy. 

• The accuracy of the FPGA-based Matlab model was kept at 97.2% after quantization which results 

depicted that low-bit precision models do not negatively impact the performance when they are 

optimized correctly. 

5.3.2. Scalability and Deployment Challenges 

• While the FPGA solutions are highly flexible in LoRa implementation, their programming is rather 

challenging and involves using VHDL/Verilog. 

• There are existing ASIC products such as Edge TPU but cannot be adapted for new models. 

• Depending on the specific IoT application, the tradeoff would be between using a processor or an 

FPGA for power and efficiency, speed of development and integration complexity. 
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5.3.3. Future Prospects 

• Optimizations regarding neuromorphic computing and in-memory AI processing will improve the 

effectiveness of hardware accelerators. 

• This action will enable IoT devices to learn over Android/other OS without necessarily requiring 

cloud updates. 

• The proposed design, with FPGA-GPU hybrid AI accelerators, seems to offer maximum flexibility 

for minimal power consumption for future IoT systems. 

5.4. Insights and Implications from Performance Analysis 

• Several advantages are associated with the use of hardware acceleration in various operations, but 

specifically, deep learning in IoT benefits from it through improvement in the aspects of latency, and 

energy consumption, as well as the real-time results of IoT. 

• FPGA-based CNN accelerators achieve performance gains of 34% in terms of throughput and 

decreased energy dissipation by 73% as compared to the CPU-based systems, and are therefore ideal 

for edge AI.  

• Which of them is to be used – FPGA, GPU, or ASIC, depends on the specific Internet of Things 

application, taking into consideration power consumption, performance, and perimeter scalability. 

• Additional research areas are hybrid acceleration, and federated learning at the edge to improve IoT-

based deep learning. 

6. Conclusion 

Hardware acceleration also offers a stable solution to fight against the computational and energy issues of 

deep learning models in IoT devices. It is now possible to conduct deep learning using specialized hardware 

like FPGA and ASIC with a lot less latency and power consumption than before. This improvement in 

processing efficiency makes real-time data processing possible on the IoT system with minimal use of 

power to enable it to perform complex tasks such as real-time object identification, abnormality 

identification, and real-time decision-making with great efficiency. 

The technological development of models may also say much about heating the phenomena of optimization, 

as well as about the advances in the architecture of hardware that are making smart IoT applications more 

than just an improved set of performance features – increasingly, they are reliable and efficient. With the 

evolving deep learning models, the incorporation of hardware accelerators holds the key to achieving 

optimized and efficient solutions. This combination of ultra-efficient algorithms and impressive hardware 

perfectly underlines the key foundation of future IoT systems and offers them the capacity to function as a 

part of complex and dynamic environments and increase their demand for real-time analytics. 

6.1. Future Improvements 

Future enhancements should include the enhancement of the availability of adaptive hardware which shall 

be capable of adjusting its characteristic parameters based on the workload characteristics. On the same 

note, enhancing techniques in model compression like deeper quantization, aggressive pruning, and 

knowledge distillation will add more reduction in the computational load as it is to support enhanced AI 

capabilities on the edge.These research directions are important for developing future generations of IoT 

systems that are more intelligent, effective and adaptive to the actual conditions in the developing 

environment. 
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