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Abstract: Melanoma is one of the predominant types of skin cancer. The affected number has been increasing year after 

year. Although the deaths can be minimized by early detection and there is where the problem exists and consulting a 

dermatologist may not always guarantee the success of early detection and diagnoses. At first, the dermatologist examines 

the skin visually and decides whether it’s a type of skin cancer or a skin allergy. The accuracy of the diagnosis directly 

corresponds to the experience of the dermatologist. Even a small error in the inspection of the skin might end a life of a 

person so it is really necessary to have a standard and supporting system which can help dermatologists to identify and 

diagnose the patients is necessary. So with the advancements in image processing and deep learning algorithms have 

unleashed the potential to classify and identify the type of skin cancer with a single click of an image. The traditional method 

involves a lot of pre-processing steps and if something goes wrong in that step the model doesn’t perform well. The accuracy 

won’t be up to the mark this is where the Convolutional Neural Networks come into the picture. These models don’t require 

any feature extraction or with some minimal pre-processing steps to be done and it consumes a huge amount of data to be 

well trained. In this paper, we will compare the transfer learning with end-to-end trained custom deep learning models. It 

classifies the images into seven different classes. The model is deployed on the web locally which will be handy for the 

dermatologist to use it as a User Interface for assisting with the identification. The model with the transfer learning shows 

good results than the one which is trained from scratch. The plots show the difference between them and the way in which 

they train.   
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I. INTRODUCTION  

Humans are becoming more vulnerable as the decades pass by. More and more diseases are affecting and the concern is that the 

mortality rate due to cancer is increasing. Melanoma is a type of skin cancer that affects the surface of the skin. This type of cancer 

might be caused due to high exposure to UV[1]. Taking global warming into consideration the danger bar is raised high. These are 

other factors such as increasing high-temperature climatic conditions and many more. The most common types of skin cancer 

include melanoma, basal, and squamous cell carcinoma. Even though it is visible to our naked eye unlike other cancers we don’t 

care about that too much is some cases. There a lot of cases where the patients don’t even realize that they have this medical 

conduction. Moreover, some take it lightly as some kind of allergy and don’t treat it properly. By doing this they bring the danger 

to their doorsteps. The dataset used is takeup from the ISIC (International Skin Imaging Collaboration) 2018: Skin Lesion Analysis 

Towards Melanoma Detection Channelge. The most common type of cancer is Basal cell carcinoma which is not deadly as 

melanoma[3]. These are a total of seven types that are classified by the model. The squamous cell carcinoma is another type that 

accounts for about 20% of skin cancer and also not as deadly as melanoma. Early identification of these has a high rate of recovery. 

Fig. 1 shows the sample image that is used to train the model. 

 

 
Fig. 1. Cancer affected skin image  

 

II. Existing System 
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From a dermatologist perspective, the suspicious skin has to be visually examined, and then if it requires more study the image is 

captured in a high-resolution camera that reviles hidden details of the layers of the skin. The detection is directly based on the 

experience of the physician which has not standard accuracy[9]. This can be automated with the help of state-of-art algorithms, it 

has been proven that these kinds of classifications are done with great accuracy[15]. The best accuracy of the k-nearest neighbors 

(KNN) algorithm is found to be 79% and with that as a baseline.[8] If we see CNN models that can easily outperform those models 

in terms of accuracy. The features are extracted from the images manually and support vector machine (SVM) learning algorithm 

is used for classification and with an accuracy of 93.1%[9]. These systems use manual or with some automated feature selection 

process to train and classify the types of cancer. 

 

III. Proposed System 

3.1 Methodology 

The region of the skin is masked with auto threshold segmentation and it can also be done by manually setting up the pixel value. 

The color frequency can also be used to do the same kind of cancer region segmentation. The region of the cancer is masked to give 

a clear view of the pixel where the cancer is present[14]. The input image consisted of three color values. By tunning it to the desired 

value the maks can be created even accurately. Since it provides better visualization of the region rather than doing an auto 

segmentation. The masked region of cancer is shown in Fig.2 

 
(a)                                         (b) 

Fig. 2. (a) & (b) Cell masking using threshold 

One of the main focus of the paper is to make it easily accessible to the physicians for supporting them. Fig.3 shows a visual 

representation of the web application and who it works. So the web application consists of a single framework that responds to the 

physician’s request. The model is first created and then the model is used in the backend to classify the class. When the request 

comes in the image is taken back to the model and the prediction is made and the result is displayed in the web application. In this 

way, the physician will be assisted in the diagnose of skin cancer.  

 This web application must be hosted in a cloud server so that it is accessible to all. If suppose the dermatologist feels that the 

model is misclassifying a certain image wrongly. Then the model can be re-trained on those particular sets of images to make it 

more accurate. The hardest part is getting diverse images for all types of skin cancers. If you can enable the model with those images 

the model will eventually be more accurate on the real-time images. 

 When the application is hosted the home page will have an upload button where the image has to be uploaded and after that, a 

preview of the image will be shown to verify the uploaded image. On prediction, the image is taken into the flask framework where 

the class of the image is predicted and the name of the class is returned to the user interface.  

 
Fig. 3. Flow Diagram of Web Application 

 

3.2 CNN Architecture Design 

Fig.4 shows the custom model that is been built by using various layers of deep learning so that the model exhibits high accuracy. 

The size of the input image is 224x224 in the RGB(Red,Blue,Green) format. MobileNet V2 is used in the front portion of the model 

to increase performance[16]. The output of that model is again passed into several other layers to get the most out of the model. 

They consist of convolutional layers with batch normalization and the ReLu activation function is used. The same is stacked up 

multiple time and finally, the output layer is a neural network with seven output nodes with the flatten layer as the previous layer. 

[19]  
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Fig. 4. The architecture design  

 

The dropout is added to ensure that there is no overfitting in any stage of training the model. Each of the layers contains various 

layers of convolution, Activation, and max-pooling. CNN architecture has been a powerful asset in image processing and detection 

tasks [15]. They have been dominating the classification field in terms of accuracy in the prediction of images. The last neural 

network in the one that does the actual prediction work. There are two categories in which the model is trained. The first one is 

trained using the weights from the ImageNet and the other one is trained end-to-end from scratch. 

 

IV. Experiment Result 

4.1 Plots 

Fig.5 shows the training and validation accuracy of the custom model during each epoch. The spikes are up since most weights are 

already in the right place. The weights from the ImageNet is really helping the model to train rapidly on the new image data. The 

resultant accuracy is somewhere around 95%. The accuracy is somewhat stable at the end of the training. 

 
Fig. 5. Training Plot of the custom model 

 

 Fig.6 shows the loss of the custom model during each epoch. We can observe the same kind of downward spikes in the loss that 

is calculated. The loss is being stabilized in the last part of the training and that shows that the model is trained for the maximum 

accuracy.   

 

 
Fig. 6. Loss Plot of the custom model 

 

 Fig.7 shows the training plot of the end-to-end trained model during each epoch. The model is slowly trained and dips at a point 

and starts training. The model is taking a lot of time to train and fit the images.  
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Fig. 7. Training  Plot of the end-to-end trained model 

 

 Fig.8 shows the loss plot of the end-to-end trained model during each epoch. Initially, the loss is very high and it converges 

really slowly.  

 
 Fig. 8. Loss  Plot of the end-to-end trained model 

 

4.2 Confusion Matrix 

The easiest way to check whether the model performance good is by using confusion matrix. The confusion matrix gives an overall 

summary of the predictions that are made. The tabulated format can be easily interpreted. It shows both the positive and negative 

errors in a single table format. 

Fig. 9 shows the confusion matrix that is plotted at the end of the training. A total of 939 images are classified and the performance 

metrics are analyzed. We observe that the Melanocytic nevi which have a large number of images are classified most accurately. 

The confusion matrix is for the end-to-end trained model    

 
Fig. 9. Confusion Matrix of the model used 
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4.3 Web Application Output 

 

The home page of the application is shown in Fig. 10, Once you upload the image a preview will be shown. 

 

 
Fig. 10. Home Page Application 

 

The preview of the uploaded image is shown as a confirmation and you can make the predictions from there as shown in Fig. 11. 

 
Fig.11. Preview of the uploaded image 

 Now the image is taken into the flask framework where the prediction is made and the result is shown on the same page as 

shown in Fig. 12. 
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Fig. 12. Result Page 

. 

IV. CONCLUSION 

The entire framework is deployed in a local server which needs to be hosted on a cloud platform to make it accessible for wider 

adoption and usage. The trained custom model achieves an accuracy of around 95%. The custom model with the transfer learning 

is more accurate than the model that is trained end-to-end from scratch. The model works fine with most of the images due to the 

fact that the dataset is very complex to train due to the similarity in the types. The types are too similar in nature so that the model 

is still struggling a little on that. Collecting more dataset images on those types will be handly when it comes to classifying such 

kind. The wide adoption of this web application will benefit and make the model even more accurate. The same web application 

can be altered in such a way that it fits other classification applications as well. This is made possible since the model is constructed 

in a generic way to fit medical images. Periodic updates and new tech components can be added as per the needs. Further work can 

be on the database management for the physicians and getting their details for collaborative work. It will be really helpful in case 

of a large outbreak. 
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