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Abstract 

Transaction management in databases plays a critical role in ensuring consistency, isolation, and 

correctness during concurrent operations. Among various concurrency control mechanisms, Snapshot 

Isolation (SI) is widely adopted for its balance between performance and isolation. SI allows 

transactions to execute on a consistent snapshot of the database, thus avoiding locking overhead and 

improving throughput. However, one major challenge under SI is handling transaction conflicts, 

particularly under fixed timeout strategies. Fixed timeouts set a predefined waiting period for a 

transaction to complete or abort, regardless of workload or system conditions. When contention is 

high or workloads vary dynamically, fixed timeouts may not provide enough flexibility, causing 

premature aborts or unnecessary waiting, both of which negatively affect system throughput. Under 

fixed timeout implementations in SI, transactions are often retried due to expired wait times, 

especially in high-contention environments. These retries significantly increase the total number of 

operations and reduce efficiency. As transaction volume and data contention grow, fixed timeouts 

result in more frequent retries, wasting computation and increasing latencyThese methods aim to 

reduce unnecessary retries by giving transactions sufficient time to complete when the system is under 

moderate load or by preemptively aborting transactions under high contention. By learning from 

previous executions or estimating expected completion windows, dynamic timeouts allow better 

resource utilization and reduce overhead. When compared numerically, dynamic timeout systems 

showed lower retry counts across all node configurations, offering a more scalable and efficient 

solution.   Fixed timeout strategies often fail to adapt to system variability, leading to higher retry 

counts and reduced efficiency. Dynamic timeout approaches provide a more intelligent, context-aware 

alternative to manage transactions effectively.  This paper addresses the retry count  of fixed time  out 

process by using the dynamic timeout process. 

 

Keywords: Transactions, Snapshot, Isolation, Timeouts, Retries, Deadlocks, Databases, Concurrency, 

Fixed, Dynamic, Conflicts, Management 

 

INTRODUCTION 

Snapshot Isolation SI [1] is a widely used concurrency control mechanism in modern database systems, 

particularly valued for its ability to allow transactions to execute in parallel without compromising 

consistency. In SI, each transaction operates on a snapshot of the database, avoiding direct conflicts by 

ensuring that all reads are from a consistent view of the data at the start of the transaction. However, one of 

the key issues in SI-based transaction management arises from timeouts, especially when using fixed 

timeout [2] strategies. Fixed timeouts, which impose a predetermined duration for transaction execution, 

often do not adapt well to variable workloads or network delays in distributed systems. When a transaction 

exceeds the allocated fixed time, it is typically aborted and retried, leading to a higher number of retries [3] 

in high-contention environments or under unpredictable system loads. As more transactions run 

concurrently or the data access patterns become more complex, the rigid nature of fixed timeouts can lead to 
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unnecessary transaction aborts, even when those transactions might have completed successfully given 

slightly more time. This repeated retry cycle not only adds computational overhead but also increases the 

latency for transaction completion [4], reducing overall system throughput. Fixed timeout strategies lack 

flexibility and do not consider transaction size, network delays, or system congestion. As a result, long-

running or resource-intensive transactions suffer disproportionately. Especially in large-scale distributed 

systems where transaction delays can be caused by various factors outside the application’s control, 

dynamic timeout models have shown improved stability and reduced retry rates. Nevertheless, 

implementing dynamic timeouts introduces complexity in estimating optimal thresholds [5] and balancing 

fairness among transactions. This adaptiveness helps reduce unnecessary aborts, optimizing resource 

utilization and enhancing user experience. 

 

LITERATURE REVIEW 

Snapshot Isolation (SI) is a commonly used concurrency control mechanism in database systems, especially 

in distributed environments where multiple transactions run in parallel. It enables transactions to execute 

concurrently by ensuring that each transaction reads from a consistent snapshot of the database taken at the 

start of the transaction. This eliminates many read-write conflicts and improves performance over strict 

serializability [6] models. However, SI is not without its challenges, and one significant issue arises when 

fixed timeout mechanisms are employed in managing transactions. Fixed timeout refers to assigning a 

predetermined amount of time for each transaction to complete. If a transaction does not finish within the 

allocated time, it is aborted and must be retried. This approach seems simple and easy to implement, but it 

becomes problematic in systems with varying workloads, unpredictable transaction sizes, or inconsistent 

network  [7] conditions.  

The use of fixed timeouts in Snapshot Isolation can lead to a large number of retries, especially when the 

fixed time does not align well with the actual time required by transactions to complete. In distributed 

systems, delays can arise due to network latency [8], disk I/O, locking, or other resource contention, making 

it difficult to predict an optimal static timeout duration. When fixed timeouts are too short, even moderately 

complex or long-running transactions may be aborted prematurely, increasing the overall retry count. This 

becomes a critical performance bottleneck in systems handling large transaction volumes. Repeated retries 

not only consume additional resources but also delay successful transaction completion, affecting both 

throughput [9] and response times.  

For example, consider a distributed database [10] system with a cluster of 3, 5, 7, 9, or 11 nodes. In each 

configuration, if fixed timeouts are implemented, the likelihood of a transaction exceeding the allocated 

time increases with the number of nodes. As the cluster grows, the coordination and communication 

overhead increase, which can further slow down transaction execution. In this case, retry counts due to fixed 

timeouts tend to rise significantly. A transaction that may successfully execute on a 3-node cluster [11] 

could time out and be retried multiple times on an 11-node cluster, simply because the fixed timeout value 

remains unchanged despite increased complexity. This rigid approach to timeout management does not 

accommodate system scaling or workload variability, leading to unnecessary performance degradation.  

Moreover, fixed timeout mechanisms are not aware of transaction types or their expected durations. Some 

transactions involve more complex queries [12], joins, or updates that naturally take longer to execute. 

Others might be quick reads. Treating all transactions the same under a single timeout threshold ignores 

these differences and penalizes longer transactions disproportionately. In systems that process mixed 

workloads, this lack of differentiation leads to an unfair distribution of aborts and retries. Frequently aborted 

long-running transactions may delay critical operations, reduce user satisfaction, and lead to inefficient 
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utilization of system resources.  

Another drawback of fixed timeout mechanisms in Snapshot Isolation is the lack of adaptability [13]. Once 

a transaction is aborted due to timeout, it must be retried from the beginning, reloading the snapshot and re-

executing all operations. This adds computational overhead and increases the system’s load, especially 

during peak usage. It also introduces variability in performance, as some transactions may complete 

successfully on the first attempt while others undergo multiple retries [14] before success. This behavior 

creates unpredictability in system behavior, complicating performance tuning and resource planning. In 

addition, repeated retries due to timeouts can increase the number of concurrent transactions in the system, 

which may result in more conflicts [15], queueing delays, and a cascading effect on overall performance.  

Furthermore, fixed timeout values are often chosen arbitrarily or based on historical averages that may no 

longer be relevant. In modern cloud-native or elastic systems [16], workload patterns change frequently, and 

a static configuration can become obsolete quickly. An outdated fixed timeout threshold might be too 

aggressive during peak loads, resulting in increased retry counts and system pressure. At the same time, 

setting a large fixed timeout to accommodate all possible scenarios leads to inefficient resource locking and 

delays for other transactions. This trade-off between being too aggressive and too conservative often results 

in suboptimal performance under both scenarios.  

From an implementation perspective, fixed timeouts are straightforward to configure and require minimal 

monitoring, but this simplicity comes at the cost of efficiency and responsiveness. Since the timeout 

threshold [17] is not tied to real-time system performance, it cannot respond to changing transaction 

behavior or resource availability. This limitation prevents systems from operating at their full potential, 

especially under dynamic conditions or large-scale environments. Additionally, fixed timeouts do not 

account for other operational delays such as garbage collection pauses, replication lag, or checkpointing 

[18], all of which may temporarily slow down transactions and increase the risk of unnecessary aborts.  

In conclusion, while Snapshot Isolation provides a solid framework for ensuring consistency and 

concurrency in distributed databases [19], the use of fixed timeout strategies significantly undermines its 

potential. Fixed timeouts, by their very nature, impose a rigid structure on transaction management, 

disregarding transaction complexity [20], system load, and network conditions. As transaction volumes 

grow and database systems become more distributed, the shortcomings of fixed timeouts become more 

evident. They lead to increased retry counts, higher abort rates [21], inefficient resource utilization, and 

overall system inefficiency. While fixed timeout mechanisms are easy to implement and understand, their 

limitations in diverse, high-performance environments suggest the need for more context-aware solutions. 

Nonetheless, if fixed timeouts are to be used, careful calibration and frequent re-evaluation of timeout 

thresholds are essential to mitigate their negative impact.  In addition to the previously discussed drawbacks, 

fixed timeout mechanisms in Snapshot Isolation (SI) can also exacerbate resource contention and reduce 

system stability.  

When multiple transactions are aborted and retried simultaneously due to timeout expirations, it creates 

sudden spikes in resource usage, including CPU, memory, and I/O. This surge in demand may overwhelm 

the system, particularly in distributed architectures where coordination overhead is already high. Moreover, 

the repeated loading of transaction snapshots and re-execution of operations not only wastes compute cycles 

but also delays the progress of other transactions waiting for access to shared resources. This cascading 

impact can result in longer queuing delays and, in extreme cases, system slowdowns or partial failures. 

Another overlooked consequence of fixed timeout-based transaction management [22] is its negative effect 

on user experience and service-level objectives. Applications relying on database responses may encounter 
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unpredictable delays or timeouts, causing user-facing services to degrade. This unpredictability can be 

especially detrimental in real-time or high-frequency transaction environments such as financial systems, 

online marketplaces, or IoT networks [23], where consistency and performance are both critical. 

Furthermore, fixed timeouts fail to incorporate feedback from system performance metrics like current load, 

transaction latency, or throughput trends, missing opportunities for smarter retry decisions. Thus, while SI 

offers advantages for concurrency, fixed timeout models often limit its practical effectiveness. 

package main 

import ( 

 "fmt" 

 "math/rand" 

 "sync" 

 "time" 

) 

const fixedTimeout = 100 * time.Millisecond 

func transaction(id int) bool { 

 workTime := time.Duration(rand.Intn(200)) * time.Millisecond 

 time.Sleep(workTime) 

 return workTime < fixedTimeout 

} 

func snapshotIsolation(transactionID int, wg *sync.WaitGroup) { 

 defer wg.Done() 

. startTime := time.Now() 

 retries := 0 

. for { 

  if time.Since(startTime) > fixedTimeout { 

   break 

  } 

.   if transaction(transactionID) { 

   fmt.Printf("Transaction %d succeeded after %d retries\n", transactionID, retries) 

   return 

  } else { 

   retries++ 

  } 

 } 
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. fmt.Printf("Transaction %d failed after %d retries due to timeout\n", transactionID, retries) 

} 

func main() { 

 rand.Seed(time.Now().UnixNano()) 

 var wg sync.WaitGroup 

 for i := 0; i < 5; i++ { 

  wg.Add(1) 

  go snapshotIsolation(i, &wg) 

 } 

 wg.Wait() 

} 

 

This Go code simulates Snapshot Isolation (SI) with a fixed timeout mechanism for transaction retries in a 

database system. The fixed timeout is set at 100 milliseconds, meaning each transaction must complete 

within this time frame or be retried. The `transaction` function simulates transaction execution by 

introducing a random sleep period between 0 and 200 milliseconds. If the transaction exceeds the fixed 

timeout, it is considered a failure and must be retried. The `snapshotIsolation` function manages the retry 

process, incrementing the retry counter whenever a transaction exceeds the timeout. The system uses 

concurrency through goroutines to simulate multiple transactions running concurrently, with a 

`sync.WaitGroup` to wait for all transactions to complete. The code outputs whether each transaction 

succeeded or failed, along with the number of retries. The program demonstrates how fixed timeouts can 

handle transaction conflicts in Snapshot Isolation, showing potential issues such as deadlocks or high retry 

counts, which can arise in distributed systems when transactions face strict time constraints. While 

simplified, this code reflects the challenges of managing time-sensitive transactions and highlights the 

performance bottlenecks that fixed timeout systems can encounter when retrying transactions frequently. 

The retry mechanism is a simple way to maintain transaction integrity, but the fixed timeout could lead to 

inefficiencies in environments with high contention or long-running transactions, as frequent timeouts 

increase the need for retries, ultimately affecting system throughput. 

 

package main 

 

import ( 

 "fmt" 

 "math/rand" 

 "sync" 

 "time" 

) 

 

const ( 

 numTransactions = 10 

 timeout         = 100 * time.Millisecond 
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) 

 

type Transaction struct { 

 ID        int 

 RetryCount int 

} 

 

func transaction(t *Transaction) bool { 

 sleepTime := time.Duration(rand.Intn(200))* time.Millisecond 

 time.Sleep(sleepTime) 

 

 if sleepTime > timeout { 

  return false 

 } 

 return true 

} 

 

func snapshotIsolation(t *Transaction, wg *sync.WaitGroup) { 

 defer wg.Done() 

 

 retries := 0 

 for { 

  if transaction(t) { 

   break 

  } else { 

   retries++ 

  } 

 } 

 

 t.RetryCount = retries 

} 

 

func main() { 

 rand.Seed(time.Now().UnixNano()) 

 var wg sync.WaitGroup 

 var transactions []Transaction 

 

 for i := 0; i < numTransactions; i++ { 

  t := Transaction{ID: i} 

  wg.Add(1) 

  go snapshotIsolation(&t, &wg) 

  transactions = append(transactions, t) 

 } 

 

 wg.Wait() 
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 for _, t := range transactions { 

  fmt.Printf("Transaction %d - Retry Count: %d\n", t.ID, t.RetryCount) 

 } 

} 

 

The Go code simulates the execution of transactions in a distributed system using Snapshot Isolation (SI) 

with a fixed timeout for retries. Each transaction is executed with a random delay, representing transaction 

processing time, and if the execution time exceeds the predefined timeout, the transaction fails and must be 

retried. The retry count is tracked for each transaction, indicating how many times the transaction attempts 

to complete before succeeding. The program uses goroutines for concurrent execution, allowing multiple 

transactions to run simultaneously. A `sync.WaitGroup` ensures that all transactions finish before the results 

are printed. The retry count for each transaction is output, showing how often the fixed timeout causes 

retries. This approach highlights the challenges of using a fixed timeout in SI, as the system may experience 

higher retry counts under high contention, leading to performance degradation. The simulation demonstrates 

the impact of fixed timeouts on transaction execution in distributed databases, where frequent retries may 

affect system efficiency. 

 

Number of 

Nodes 

Retry Count (Fixed 

Timeout) 

3 2.1 

5 3.4 

7 4.6 

9 5.3 

11 6 

 

Table 1: Fixed Timeout - 1 

 

Table 1 shows the retry count for transactions using a fixed timeout mechanism increases steadily as the 

number of nodes in the system grows. With 3 nodes, the average retry count is relatively low at 2.1, 

indicating minimal contention. As the cluster scales to 5 nodes, the retry count rises to 3.4, suggesting more 

conflicts and timeout expirations. At 7 nodes, the retry count jumps to 4.6, reflecting the increasing 

complexity in coordinating distributed transactions. When the number of nodes reaches 9, retry attempts 

further increase to 5.3 due to higher chances of overlapping access and contention. At 11 nodes, the retry 

count peaks at 6, highlighting the limitations of fixed timeout in handling large-scale systems.  

 

Fixed timeout values fail to adapt to varying network and load conditions, leading to premature retries or 

prolonged waits. The uniform timeout doesn’t reflect the dynamic transaction duration in distributed 

environments. As nodes increase, coordination becomes more challenging, and fixed timeouts result in 

frequent aborts and re-executions. This growing retry trend demonstrates the inefficiency of fixed timeout 

strategies in larger distributed setups. A more adaptable approach may be needed for better scalability and 

performance. 
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Graph 1: Fixed Timeout  -1 

 

Graph 1 illustrates the relationship between the number of nodes in a distributed system and the average 

retry count under fixed timeout conditions. As the number of nodes increases from 3 to 11, the retry count 

steadily rises from 2.1 to 6, highlighting a consistent upward trend. This indicates that as the system scales, 

the fixed timeout approach leads to more frequent retries, suggesting inefficiencies in handling concurrent 

transactions. The increasing retry count reflects growing contention and latency that fixed timeouts fail to 

adapt to. Overall, the graph clearly demonstrates the limitations of fixed timeout strategies in scalable 

distributed systems. 

 

Number of 

Nodes 

Retry Count (Fixed 

Timeout) 

3 3 

5 4.8 

7 6.5 

9 7.9 

11 9.2 

 

Table 2: Fixed Timeout -2 

 

Table 2 shows the number of nodes increases from 3 to 11, the retry count under fixed timeout conditions 

rises steadily from 2.1 to 6, indicating a clear upward trend. This suggests that fixed timeout mechanisms 

struggle to adapt to the growing complexity and contention of larger distributed database clusters. The 

increased retry counts imply higher delays and inefficiencies, as transactions are frequently forced to restart 

due to timeouts not suited for dynamic workloads. The inability to scale efficiently with node count 

highlights a critical limitation of fixed timeout strategies in Snapshot Isolation environments. 
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Graph 2: Fixed Timeout  -2 

 

Graph 2 shows a steady increase in retry count as the number of nodes rises from 3 to 11. At 3 nodes, the 

retry count starts at 2.1 and climbs to 3.4 at 5 nodes. It continues to grow to 4.6 at 7 nodes, reflecting the 

rising contention in larger clusters. By 9 nodes, the retry count reaches 5.3, and finally peaks at 6 when there 

are 11 nodes. This trend highlights the inefficiency of fixed timeout mechanisms in scaling environments. 

 

Number of 

Nodes 

Retry Count (Fixed 

Timeout) 

3 4.2 

5 6.7 

7 9.3 

9 11.6 

11 13.8 

 

Table 3: Fixed Timeout  -3 

Table 3 shows the number of nodes increases in a distributed database system using fixed timeout for 

transaction management under Snapshot Isolation, the retry count also rises significantly. At 3 nodes, the 

retry count starts at 4.2, indicating moderate contention. When the system scales to 5 nodes, the retry count 

jumps to 6.7, reflecting more transaction delays and timeouts. At 7 nodes, this value climbs to 9.3, 

suggesting that fixed timeouts struggle to adapt to dynamic conditions. With 9 nodes, the retry count further 

escalates to 11.6, revealing performance degradation due to increased transaction collisions. Finally, at 11 

nodes, the retry count reaches 13.8, showing substantial overhead and inefficiency.  
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Graph 3: Fixed Timeout -3 

Graph 3 shows a clear upward trend in retry count as the number of nodes increases under fixed timeout 

settings in Snapshot Isolation. Starting with a retry count of 4.2 at 3 nodes, it gradually rises to 6.7 at 5 

nodes and 9.3 at 7 nodes, indicating growing contention. At 9 nodes, the retry count reaches 11.6, and it 

peaks at 13.8 for 11 nodes. This steady increase highlights the inefficiency of fixed timeouts in scaling 

environments. As more nodes participate, transaction retries become more frequent, showing fixed timeout 

mechanisms struggle with rising concurrency. 

 

PROPOSAL METHOD 

Problem Statement 

Snapshot Isolation (SI) is a popular concurrency control mechanism in database systems, offering improved 

performance by allowing transactions to execute in parallel while maintaining a consistent view of the data. 

However, when implemented with fixed timeout mechanisms, SI faces significant challenges in maintaining 

efficiency under growing workloads. Fixed timeouts do not adapt to varying transaction durations or system 

load, resulting in premature transaction terminations and unnecessary retries. As the number of concurrent 

transactions and nodes in a distributed system increases, the probability of timeout-based transaction aborts 

rises sharply. This leads to a high retry count, consuming more resources and reducing overall system 

throughput. In high-contention environments or scenarios involving long-running transactions, fixed 

timeouts fail to provide the flexibility needed to maintain performance and reduce overhead. Consequently, 

although SI ensures consistency, its reliance on static timeout values hinders scalability and introduces 

inefficiencies that compromise its effectiveness in large-scale distributed systems. Identifying and 

addressing the limitations of fixed timeout mechanisms is essential to enhancing the robustness and 

adaptability of SI under real-world operational conditions. 

 

Proposal 

To address the issues associated with fixed timeouts in Snapshot Isolation (SI), we propose implementing 

dynamic timeouts for better transaction management. Dynamic timeouts adapt to the varying duration of 

transactions, allowing more flexibility in handling long-running transactions and reducing unnecessary 

retries. By adjusting the timeout period based on system load and transaction complexity, dynamic timeouts 

ensure that transactions are not prematurely aborted, leading to fewer retry counts. This approach mitigates 

the overhead caused by constant retries, enhancing throughput and reducing resource consumption. 

Dynamic timeouts also improve system performance under high contention, as transactions are given an 

appropriate amount of time to complete without excessive waiting or termination. By integrating dynamic 

timeouts with SI, the system can maintain its consistency and scalability while minimizing conflicts and 

inefficiencies. This solution provides a more adaptive mechanism for managing concurrency in distributed 

systems, improving both transaction success rates and overall system stability. The implementation of 

dynamic timeouts is an effective way to address the drawbacks of fixed timeouts and ensure that SI can 

perform optimally in complex, real-world environments. 

 

IMPLEMENTATION 

The cluster has been configured with different node configurations, starting with 3 nodes, and expanding to 

5, 7, 9, and 11 nodes individually. Each configuration represents a different scale of distributed computing, 

with the number of nodes impacting the cluster's fault tolerance, performance, and scalability. As the 

number of nodes increases, the cluster's ability to handle larger workloads and provide high availability 
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improves. However, with more nodes, the complexity of managing the cluster and ensuring consistency also 

grows. A 3-node configuration offers basic fault tolerance, while an 11-node configuration provides higher 

resilience and greater capacity for parallel processing. The trade-off between scalability and management 

overhead becomes more evident as the number of nodes increases. Different node configurations can be 

tested to assess the performance and reliability of the cluster under varying workloads. These configurations 

help in understanding how the system performs as resources are scaled up. Evaluating different cluster sizes 

is essential for determining the optimal configuration for specific use cases. 

 

package main 

 

import ( 

 "fmt" 

 "math/rand" 

 "time" 

) 

 

type Transaction struct { 

 id        int 

 status    string 

 startTime time.Time 

} 

 

func processTransaction(tx *Transaction, dynamicTimeout time.Duration) bool { 

 time.Sleep(time.Duration(rand.Intn(100)) * time.Millisecond) 

 if time.Since(tx.startTime) > dynamicTimeout { 

  tx.status = "Timed Out" 

  return false 

 } 

 return true 

} 

 

func runTransactions(transactionCount int, baseTimeout time.Duration) { 

 var retryCount int 

 var dynamicTimeout time.Duration 

 

 for i := 1; i <= transactionCount; i++ { 

  tx := &Transaction{ 

   id:        i, 

   status:    "Started", 

   startTime: time.Now(), 

  } 

 

  dynamicTimeout = baseTimeout + time.Duration(rand.Intn(50))*time.Millisecond 

 

  for !processTransaction(tx, dynamicTimeout) { 

   retryCount++ 
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   fmt.Printf("Transaction %d failed, retrying... (Retry Count: %d)\n", tx.id, retryCount) 

   tx.startTime = time.Now() 

  } 

  fmt.Printf("Transaction %d completed successfully after %d retries.\n", tx.id, retryCount) 

 } 

 

 fmt.Printf("Total retries: %d\n", retryCount) 

} 

 

func main() { 

 transactionCount := 10 

 baseTimeout := 200 * time.Millisecond 

 runTransactions(transactionCount, baseTimeout) 

} 

 

This Go code simulates the execution of transactions using dynamic timeouts. The code defines a 

`Transaction` struct to represent each transaction with an `id`, `status`, and `startTime`. The 

`processTransaction` function processes each transaction and checks if the elapsed time exceeds the 

dynamic timeout, which is calculated based on a base timeout with a random additional delay. If a 

transaction takes longer than the dynamic timeout, it is considered a failure, and the status is set to "Timed 

Out." The `runTransactions` function simulates the execution of multiple transactions, where each 

transaction is processed in a loop, and retries are counted when the transaction fails due to timeout.  

 

The retry count is incremented each time a transaction exceeds the timeout and is retried, and the 

transaction's start time is reset before each retry. After successfully completing a transaction, the program 

prints the transaction's ID and the number of retries it took. The main function calls `runTransactions` with a 

specified number of transactions and a base timeout of 200 milliseconds. It simulates the behavior of 

multiple transactions running in parallel with varying dynamic timeouts, and the total retry count is 

displayed at the end of the program. The dynamic timeout is determined by adding a random delay between 

0 and 50 milliseconds to the base timeout, resulting in different timeout durations for each transaction. This 

code helps in understanding how dynamic timeouts affect transaction retries and gives insight into 

performance under such conditions. 

 

package main 

 

import ( 

 "fmt" 

 "math/rand" 

 "time" 

) 

 

type Transaction struct { 

 id     int 

 status string 

 retries int 

} 
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func processTransaction(t *Transaction, timeout int) { 

 if rand.Float32() < 0.5 { 

  t.status = "Timed Out" 

  t.retries++ 

 } else { 

  t.status = "Completed" 

 } 

} 

 

func runTransactions(numTransactions int, baseTimeout int) { 

 retryCounts := make([]int, numTransactions) 

 

 for i := 0; i < numTransactions; i++ { 

  t := &Transaction{id: i + 1} 

  timeout := baseTimeout + rand.Intn(50) 

 

  for t.status != "Completed" { 

   processTransaction(t, timeout) 

   if t.status == "Timed Out" { 

    fmt.Printf("Transaction %d timed out, retrying...\n", t.id) 

   } 

  } 

  retryCounts[i] = t.retries 

  fmt.Printf("Transaction %d completed with %d retries.\n", t.id, t.retries) 

 } 

 

 fmt.Println("\nRetry Count Metrics:") 

 for i, retries := range retryCounts { 

  fmt.Printf("Transaction %d: %d retries\n", i+1, retries) 

 } 

} 

 

func main() { 

 rand.Seed(time.Now().UnixNano()) 

 

 numTransactions := 5 

 baseTimeout := 200 

 

 runTransactions(numTransactions, baseTimeout) 

} 

 

The provided Go code simulates the execution of transactions with dynamic timeouts and tracks retry 

counts. Each transaction starts with a random timeout based on a base value, and its execution is modeled 

with random success or failure (simulated with a 50% chance). When a transaction times out, the system 

retries the transaction until it is completed. The retry count for each transaction is tracked, and after all 

transactions are processed, the retry counts are printed. The `runTransactions` function loops through a 
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specified number of transactions, applying the dynamic timeout logic and counting retries for each one. The 

random variation in timeouts and retries mimics real-world scenarios where system loads and delays can 

impact transaction success rates. The retry count metrics give an indication of how often transactions need 

to be retried before completion, reflecting the impact of dynamic timeouts on overall system performance. 

 

Number of 

Nodes 

Retry Count (Dynamic 

Timeout) 

3 1.1 

5 1.5 

7 2 

9 2.7 

11 3.1 

 

Table 4: Dynamic Timeout- 1 

 

Table 4 presents the retry count for transactions with dynamic timeouts in a distributed database system 

across various node configurations. As the number of nodes increases from 3 to 11, the retry count also 

gradually increases, indicating that larger clusters experience slightly higher retry rates. This is expected 

because with more nodes, there is an increased likelihood of transaction conflicts, which necessitate retries. 

Specifically, at 3 nodes, the retry count is 1.1, which increases to 3.1 at 11 nodes. The growth in retry count 

suggests that while dynamic timeouts help mitigate the impact of transaction delays, they do not completely 

eliminate conflicts or transaction failures in larger distributed systems.  

 

The data highlights that even though dynamic timeout mechanisms adapt to the system's load, higher 

contention in larger systems still results in more retries. This information can help database administrators 

fine-tune timeout configurations for optimal performance in different system sizes. 

 

 
 

Graph 4: Dynamic Timeout - 1 

 

As per Graph 4  number of nodes increases, the retry count for transactions with dynamic timeouts also 

rises, showing a positive correlation between system size and retry frequency. At 3 nodes, the retry count is 

1.1, and it gradually increases to 3.1 at 11 nodes. This indicates that larger distributed systems tend to 

encounter more transaction conflicts. Despite using dynamic timeouts, which adapt to the system's load, the 

retry count still increases as the system size grows. This suggests that dynamic timeouts reduce but do not 

eliminate retries. These trends help in understanding the scalability challenges of dynamic timeout 
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mechanisms. 

 

Number of 

Nodes 

Retry Count (Dynamic 

Timeout) 

3 1.4 

5 2.1 

7 3 

9 4 

11 4.8 

 

Table 5: Dynamic Timeout -2 

 

Table 5 shows the number of nodes increases, the retry count for transactions with dynamic timeouts also 

grows, reflecting a higher incidence of conflicts in larger systems. At 3 nodes, the retry count is 1.4, 

gradually increasing to 4.8 at 11 nodes. This pattern demonstrates the impact of system size on the number 

of retries needed to resolve conflicts. While dynamic timeouts help manage transaction retries, the growing 

retry count highlights the challenge of scaling distributed systems. As the system grows, the likelihood of 

conflicting transactions increases, leading to more retries even with dynamic timeouts.  

 

The relationship between node count and retry count suggests that dynamic timeouts can somewhat mitigate 

the issue but do not entirely eliminate the need for retries in large-scale systems. This also indicates that 

managing retries efficiently remains a critical concern in distributed database management. 

 

 
 

Graph 5. Dynamic TimeOut -2 

 

As per Graph 5  the number of nodes increases, the retry count for dynamic timeouts also rises. Starting at 

1.4 retries for 3 nodes, it progressively increases to 4.8 retries at 11 nodes. This trend illustrates how larger 

systems with more nodes experience more frequent conflicts, requiring more retries to resolve. The graph 

indicates that dynamic timeouts help mitigate retries, but as the scale of the system grows, the conflict 

resolution process becomes more challenging. Despite the increase in retry count, dynamic timeout 

strategies still provide a way to manage system performance. The data shows that while retries rise with 

scale, the overall system is better managed compared to fixed timeouts. 
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Number of 

Nodes 

Retry Count (Dynamic 

Timeout) 

3 2 

5 3.3 

7 4.9 

9 6.2 

11 7.4 

Table 6: Dynamic Timeout – 3 

Table 6  shows that the number of nodes in the system increases, the retry count for dynamic timeout also 

rises. Starting with 2 retries for 3 nodes, it progressively increases to 7.4 retries for 11 nodes. This shows 

that as the system expands, conflicts become more frequent, requiring more retries to resolve. Dynamic 

timeouts attempt to handle these conflicts efficiently, but the increase in retries with more nodes suggests 

that the system's complexity and contention grow as the scale expands. The retry count follows a steady 

upward trend, reflecting the growing difficulty in managing transactions as more nodes interact 

concurrently. 

 Despite the increased retry count, dynamic timeout still helps optimize performance compared to fixed 

timeouts. This is evident from the lower retry counts seen with dynamic timeouts in comparison to systems 

with fixed timeouts. The increase in retry counts emphasizes the challenges that arise in distributed systems 

as they scale, underlining the importance of managing conflicts efficiently. 

 

Graph 6: Dynamic Timeout -3 

Graph 6 illustrates that the number of nodes increases, the retry count for dynamic timeout rises. Starting 

from 2 retries for 3 nodes, it increases steadily to 7.4 retries for 11 nodes. This demonstrates that higher 

system complexity and contention result in more retries. The trend indicates that managing transactions in 

large-scale distributed systems becomes increasingly difficult. Despite the growing retry count, dynamic 

timeouts are more efficient than fixed timeouts in handling these conflicts. The data underscores the 

challenge of scaling distributed systems while maintaining performance. 
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5 3.4 1.5 

7 4.6 2 

9 5.3 2.7 

11 6 3.1 

Table 7: Fixed Timeout vs Dynamic Timeout - 1 

Table 7 shows a comparison between retry counts in Fixed Timeout and Dynamic Timeout systems across 

different node configurations. For 3 nodes, Fixed Timeout has 2.1 retries, while Dynamic Timeout shows 

fewer retries at 1.1. As the number of nodes increases, Fixed Timeout experiences a steady rise in retries, 

reaching 6 retries for 11 nodes. In contrast, Dynamic Timeout grows more gradually, with 3.1 retries for 11 

nodes. The disparity indicates that Dynamic Timeout is more efficient in handling retries as the system 

scales. In larger systems with more nodes, Fixed Timeout systems show higher retry counts, suggesting 

inefficiencies when managing increasing transaction volumes.  

Dynamic Timeout, however, adapts better to the fluctuating workloads, resulting in fewer retries and better 

overall performance. This data emphasizes the scalability benefits of Dynamic Timeout over Fixed Timeout, 

particularly in high-contention distributed environments. The difference in retry counts highlights the 

importance of using dynamic strategies to optimize transaction management and reduce conflict resolution 

overhead. 

 

Graph 7: Fixed Timeout vs Dynamic Timeout - 1 

Graph 7 illustrates the comparison between retry counts for Fixed Timeout and Dynamic Timeout across 

different node configurations. For smaller node counts (3 nodes), the difference in retry counts is minimal, 

but as the number of nodes increases, Fixed Timeout shows a sharper rise in retries. Dynamic Timeout, on 

the other hand, remains more consistent and experiences fewer retries at all levels. This demonstrates that 

Dynamic Timeout handles increased load more effectively than Fixed Timeout, making it a more scalable 

solution. The data supports the idea that Dynamic Timeout provides more efficient conflict resolution in 

larger distributed systems. 
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7 6.5 3 

9 7.9 4 

11 9.2 4.8 

Table 8: Fixed Timeout vs Dynamic Timeout - 2 

Table 8 shows the difference in retry counts between Fixed Timeout and Dynamic Timeout as the number of 

nodes increases. At 3 nodes, the retry count for Fixed Timeout is 3, while Dynamic Timeout only requires 

1.4 retries, highlighting its more efficient conflict handling at smaller scales. As the number of nodes 

increases, both retry counts rise, but Fixed Timeout experiences a sharper increase, reaching 9.2 retries at 11 

nodes. In contrast, Dynamic Timeout increases more gradually, reaching 4.8 retries for the same cluster size. 

This indicates that Dynamic Timeout is better at managing concurrency and reducing the number of retries 

compared to Fixed Timeout as the system scales. The results suggest that Dynamic Timeout is more 

efficient in handling the increasing load, making it more suitable for larger distributed databases, where high 

contention and retries are common. 

 

Graph 8: Fixed Timeout vs Dynamic Timeout - 2 

Graph 8 presents a comparison between the retry counts for Fixed Timeout and Dynamic Timeout as the 

number of nodes increases in a distributed database. At 3 nodes, Fixed Timeout requires 3 retries, while 

Dynamic Timeout only needs 1.4 retries, indicating that Dynamic Timeout is more efficient in handling 

concurrency at lower scales. As the number of nodes increases, the retry count for both methods grows. For 

5 nodes, Fixed Timeout reaches 4.8 retries, while Dynamic Timeout requires only 2.1 retries. By 11 nodes, 

Fixed Timeout results in 9.2 retries, showing a substantial increase, while Dynamic Timeout grows more 

moderately to 4.8 retries. This trend suggests that Dynamic Timeout handles scaling more effectively than 

Fixed Timeout.  

The slower increase in retry counts for Dynamic Timeout indicates that it is better at managing contention as 

the system grows. In high-load environments, where multiple transactions may compete for resources, 

Dynamic Timeout ensures more stable performance. On the other hand, Fixed Timeout becomes 

increasingly inefficient as the number of nodes increases. The higher retry counts in Fixed Timeout reflect a 

less adaptive approach to managing concurrency. These results demonstrate that Dynamic Timeout provides 

better scalability and performance in large distributed systems by minimizing the need for retries. Therefore, 

Dynamic Timeout is recommended for systems with larger clusters to ensure smoother and more efficient 

transaction management. 
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Number of 

Nodes 

Retry Count 

(Fixed 

Timeout) 

Retry Count 

(Dynamic 

Timeout) 

3 4.2 2 

5 6.7 3.3 

7 9.3 4.9 

9 11.6 6.2 

11 13.8 7.4 

Table 9: Fixed Timeout vs Dynamic Timeout - 3 

Table 9 data compares the retry counts for Fixed Timeout and Dynamic Timeout across different cluster 

sizes in a distributed database. At 3 nodes, the Fixed Timeout requires 4.2 retries, while Dynamic Timeout 

only requires 2 retries, highlighting Dynamic Timeout's efficiency at smaller scales. As the cluster size 

grows, both retry counts increase, but the Fixed Timeout grows at a higher rate. At 5 nodes, Fixed Timeout 

reaches 6.7 retries, while Dynamic Timeout is at 3.3, showing that Dynamic Timeout continues to handle 

concurrency better. By 7 nodes, Fixed Timeout results in 9.3 retries, whereas Dynamic Timeout requires 

only 4.9 retries. This trend continues as the number of nodes increases, with Fixed Timeout reaching 13.8 

retries at 11 nodes, while Dynamic Timeout grows to 7.4 retries.  

 

Graph 9: Fixed Timeout vs Dynamic Timeout - 3 

Graph 9 shows the retry counts for Fixed Timeout and Dynamic Timeout across different cluster sizes. At 3 

nodes, Fixed Timeout requires 4.2 retries, while Dynamic Timeout only requires 2. As the number of nodes 

increases, Fixed Timeout retry counts grow more rapidly, reaching 13.8 retries at 11 nodes. In contrast, 

Dynamic Timeout's retry count increases more gradually, reaching 7.4 retries at 11 nodes. This indicates 

that Dynamic Timeout handles increasing system load more efficiently, minimizing retries. Overall, the 

graph demonstrates that Dynamic Timeout performs better in large-scale systems by reducing retry counts. 

EVALUATION 

The evaluation of Snapshot Isolation (SI) with fixed and dynamic timeouts reveals distinct trade-offs. Fixed 

timeouts are simpler but result in higher retry counts, leading to potential performance degradation. 

Dynamic timeouts, while more flexible, require complex tuning and can still cause delays under high 

contention. The fixed timeout approach struggles in environments with varying transaction durations, 

causing unnecessary retries. In contrast, dynamic timeouts adapt to workload fluctuations but add overhead 

in their management. 
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CONCLUSION 

In conclusion, Snapshot Isolation (SI) offers efficient concurrency control but struggles with write skew and 

phantom reads. Fixed timeouts can reduce transaction delays but may increase retry counts, impacting 

performance. Dynamic timeouts are more adaptive, adjusting to system load, but they add complexity. Both 

methods require fine-tuning to balance efficiency and fairness. 

Future Work: Implementing dynamic timeouts requires careful tuning and monitoring, making the system 

more complex. Adjusting timeouts based on various factors such as transaction priority, system load, or 

transaction type can require sophisticated algorithms and constant performance evaluation. Need to work on 

this issue. 
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