
Volume 9 Issue 6                                        @ November - December 2021 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2106232512          Website: www.ijirmps.org Email: editor@ijirmps.org 1 
 

The Role of Microsoft .Net Core in Modernizing 

Legacy Applications 
 

Arun K Gangula 
 

arunkgangula@gmail.com 

 

Abstract 

The role of Microsoft .Net Core in modernizing legacy applications developed in conventional 

frameworks. This paper highlights the limitations and advantages of migrating applications to .Net 

core, which can improve performance, scalability, and cross-platform support. This paper delves into 

the challenges posed by conventional frameworks while emphasizing how migration to .Net Core can 

transform applications to deliver higher efficiency, adaptability, and longevity in today's fast-paced 

software environment. 

 

Keywords: .Net Core, Azure DevOps, Model-View Controllers (MVC), Web Services, Windows 

Communication Foundation (WCF), Application Programming Interface (API) 

 

1. INTRODUCTION 

In the modern business world, companies are increasingly planning to upgrade their legacy applications to 

increase speed and gain a competitive edge. The most effective way to achieve this is by upgrading legacy 

Microsoft .Net framework applications to Microsoft .NET Core and its corresponding tools. Microsoft.NET 

Core is an open-source platform with a cross-platform solution that helps developers build high-

performance apps that are compatible with the current infrastructure and are up to date with business trends 

[1]. 

 

2. LIMITATIONS OF .NET FRAMEWORK OVER .NET CORE: 

Conventional frameworks lack Microsoft .NET Core advantages, such as enhanced performance, security, 

deployment, and cross-platform capabilities. Upgrading from legacy systems to new architecture enables 

organizations to improve their performance, adopt new technologies, automate business processes, and 

better address the needs of their customers and partners. When implemented well in a company's technology 

stack, these solutions give the organization confidence that they are on the right track, significantly when 

modernizing legacy applications using Microsoft .NET Core [2]. 

 

https://www.ijirmps.org/


Volume 9 Issue 6                                        @ November - December 2021 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2106232512          Website: www.ijirmps.org Email: editor@ijirmps.org 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 .NET Framework Architecture [3] 

 

2.1 Platform Dependency: 

Many enterprises are now adopting cloud-first strategies where applications must be deployable on multiple 

operating systems. Traditional .Net framework legacy applications are platform-dependent; ASP.NET Web 

Forms, WCF Web Services, Windows Services, and VB6 are designed to work only on a Windows 

environment, limiting their cross-platform usability, which is crucial in our connected world. 

 

2.2. Architecture: 

.NET framework applications are monolithic, meaning all the functions are packed into one application and 

not separated. This architecture leads to poor scalability and agility because deploying or updating certain 

parts of the application individually is impossible. Due to their limitations, conventional frameworks cannot 

meet organizations' current and future business requirements. 

 

2.3. Performance and User Interface: 

Most legacy applications were Web Forms, Win-forms, etc., which lack responsiveness, a rich User 

Interface, and don’t support the latest browser technologies. .NET Core introduces Blazor, which leverages 

web Assembly and offers near-native performance for building modern web applications with rich user 

interfaces. Microsoft .Net Core is a modular and lightweight version of the .NET development platform that 

provides a runtime for building apps that can be run on Windows, Linux, and macOS. 

 

3. Advantages of Migrating to .Net Core: 

3.1. Architecture: 

Microsoft .NET Core allows developers to decouple the UI from the logic and to develop microservices that 

can be deployed and managed independently. This modular design has several advantages that enhance 

scalability, agility, and reliability to meet different business needs. The main advantages of converting 

legacy applications to .NET Core include improved efficiency, security, and the system's architecture, 

which gives the user a secure feeling of technology. 

https://www.ijirmps.org/


Volume 9 Issue 6                                        @ November - December 2021 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2106232512          Website: www.ijirmps.org Email: editor@ijirmps.org 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Clean Architecture (Decoupled) [4] 

 

Microservice architecture is also known as Microservices, a loosely coupled services architecture. Each 

service in this architecture focuses on a specific business function and communicates with other services 

through API’s. At the same time, each application begins as a monolithic architecture and, over time, tends 

to become interconnected microservices. 

 

Each microservice can be independently developed, tested, and deployed based on the specific requirement. 

Microservices support using diverse programming languages and frameworks for each service, allowing 

teams to choose the best technology stack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Monolithic Architecture vs Microservice Architecture [5] 

 

Microsoft .Net Core is excellent for cloud-Native development, which will optimize cost savings and 

increase scalability and availability. 

 

 

https://www.ijirmps.org/


Volume 9 Issue 6                                        @ November - December 2021 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2106232512          Website: www.ijirmps.org Email: editor@ijirmps.org 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Cloud Native Application Architecture [6] 

 

3.2. Runtime Compilers & Memory Management: 

The .NET Core uses Common Language Runtime (CLR) and the Virtual Machine (VM) to manage 

applications, improving performance by optimizing resource utilization and execution time. It also has a 

modular structure that enables developers to use reusable libraries and packages to reduce the time and 

money spent on the development process and ensure product quality. In addition, the modular approach 

enhances security; developers can selectively include only the necessary APIs and libraries to reduce the 

attack surface. Also, Core has a scalable application architecture suitable for high-traffic websites and 

manages peak loads without over-provisioning. When migrating legacy applications to.NET Core, 

ASP.NET Core should be used as the web server. 

 

The new Kestrel web server will support asynchronous programming models. Combining Kestrel and 

ASP.Net Core will speed up application performance. Automatic memory management (Garbage collection) 

in .Net Core is not usually edited; unlike the traditional framework, the developer is responsible for 

allocating memory by creating instances [7] and eliminating programming errors and memory leaks. 

 

3.3. Portability: 

ASP.NET Core is a new web development tool that provides a single development experience for building 

web apps, APIs, and microservices. Optimized for API-driven development, supporting Open API 

(Swagger) for seamless API documentation and integration. Its modular approach and minimal system 

library dependencies make it easier to port existing apps to.NET Core with less code change. For example, 

applications developed with ASP.NET Web Forms can be ported to ASP.NET Core MVC or Blazor, better 

suited for developing web apps. Also, Core has built-in support for popular databases such as MS SQL 

Server, MySQL, and MongoDB, which are helpful in the movement of data and for growth during the 

transition. 

 

 

https://www.ijirmps.org/


Volume 9 Issue 6                                        @ November - December 2021 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2106232512          Website: www.ijirmps.org Email: editor@ijirmps.org 5 
 

3.4. Container Support: 

The lightweight characteristic of containers shares the host machine operating system rather than having a 

separate operating system for each container, allowing applications to run the same on any infrastructure 

[8]. Unlike .NET Framework, .NET Core is optimized for containerized deployments using Docker and 

Kubernetes, making it a preferred choice for cloud-native applications. 

 

3.5. Tools and resources: 

Another great advantage of the transition to .NET Core is the availability of many tools and resources from 

Microsoft and other developers. .NET Core comes with development tools like Visual Studio Code, a 

powerful cross-platform IDE. It is also integrated with popular version control systems like Azure DevOps, 

GitHub, and GitLab for collaboration and code sharing. Microsoft Developer Network (MSDN) and GitHub 

[9] sample projects are valuable resources for developers. 

 

4. CONCLUSION 

By embracing .Net Core, legacy applications are modernized and aligned with modern software 

development trends such as Continuous Integration and Continuous Deployments, cloud computing, and 

microservices. Organizations can enhance application architecture, Cross-platform capabilities, lightweight 

architecture, and performance optimizations, making it an essential upgrade for enterprises seeking 

scalability and agility. It offers a foundation for building a robust, secure, and better-aligned tech stack. In a 

rapidly changing world, .Net Core is a stable yet evolving platform that enables organizations to grow and 

develop their strategies in the digital environment. 

 

REFERENCES 

[1] Philip Japike, Kevin Grossnicklaus and Ben Dewey, Building Web Applications with .NET Core 2.1 and 

JavaScript, 2nd ed., 2021 

[2] de la Torre Sr, C., Hunter, S., Yuknewicz, P., Guthrie Sr, L., Zorrilla, U., & Valero, J. (2019). Modernize 

existing .NET applications with Azure Cloud and Windows Containers (2.2.). 

[3] AAPNA Infotech site [Online] Available: https://www.aapnainfotech.com/microsoft-net-framework-4-5-

architecture/- Microsoft .Net Framework Architecture 

[4] (September 2021) The Medium site [Online] Available: https://medium.com/dotnet-hub/clean-

architecture-with-dotnet-and-dotnet-core-aspnetcore-overview-introduction-getting-started-

ec922e53bb97- Clean Architecture with .Net and .Net Core – Overview 

[5] Jonathan Johnson, Laura Shiff March 2021. The BMC site [Online] is available: 

https://www.bmc.com/blogs/microservices-architecture/. 

[6] de la Torre Sr, C., Hunter, S., Yuknewicz, P., Guthrie Sr, L., Zorrilla, U., & Valero, J. (2019). Modernize 

existing .NET applications with Azure Cloud and Windows Containers (2.2.). 

[7] December 2018 The Dotnetcurry site [Online] Available:  

https://www.dotnetcurry.com/csharp/1471/garbage-collection-csharp-dotnet-core Garbage Collection in 

C#. 

[8] (April 2021) The RedHat site [Online] Available: https://www.redhat.com/en/topics/cloud-native-

apps/what-is-containerization -container-orchestration- What is containerization? 

[9] The GitHub Site [Online] Available: https://github.com/- Software build and ship collaborative platform 

https://www.ijirmps.org/
https://www.aapnainfotech.com/microsoft-net-framework-4-5-architecture/
https://www.aapnainfotech.com/microsoft-net-framework-4-5-architecture/
https://medium.com/dotnet-hub/clean-architecture-with-dotnet-and-dotnet-core-
https://medium.com/dotnet-hub/clean-architecture-with-dotnet-and-dotnet-core-
https://medium.com/dotnet-hub/clean-architecture-with-dotnet-and-dotnet-core-aspnetcore-overview-introduction-getting-started-ec922e53bb97
https://medium.com/dotnet-hub/clean-architecture-with-dotnet-and-dotnet-core-aspnetcore-overview-introduction-getting-started-ec922e53bb97
https://www.bmc.com/blogs/microservices-architecture/
https://www.dotnetcurry.com/csharp/1471/garbage-collection-csharp-dotnet-
https://www.dotnetcurry.com/csharp/1471/garbage-collection-csharp-dotnet-core
https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization%20-
https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization%20-
https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization#container-orchestration
https://github.com/

