
Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 1 

 

Git Branching and Release Strategies 
 

Priyanka Gowda Ashwath Narayana Gowda 
 

an.priyankagd@gmail.com 

 

Abstract  

This paper provides a comprehensive analysis of Git branching models and release strategies, which are 

crucial in modern software development for managing complex codebases and ensuring efficient 

workflows. The following study details different Git branching models, such as Git Flow, GitHub Flow, 

and GitLab Flow, and discusses their features and proper use cases. It also explores other release strategies, 

such as CI/CD, feature toggles, canary releases, and blue-green deployments. It shows how they interact 

with the former to improve software quality and stability. Through a literature review, case studies, and 

flowcharts, the paper highlights challenges and best practices in the implementation of such strategies that 

underline the role of automation tools in managing processes. These findings prove that a correctly chosen 

branching model and a release strategy are crucial for low-risk development, good team collaboration, and 

reliable software. The implications of this research are huge for any software development team targeting 

the optimization of their development and release processes in a fast-changing technological environment. 

 

Keywords: Git, Branching Models, Release Strategies, Version Control, Git Flow, Continuous Integration 

(CI), Continuous Deployment (CD), DevOps, Software Development, Source Code Management (SCM) 

 

Introduction 

Git has become intrinsic in modern software development because it offers great version control capability. Since 

it is a distributed version control system, Git greatly enhances the possibility for any developer to change the 

source code effectively, thus enabling collaboration among groups of persons working on a project from any part 

of the world. It is able to trace changes; it goes back to previous states and handles several versions all at once, 

which has made this system very essential in both small- and large-scale development projects. 

One of the main features of Git is the ability to support strategies in the management of parallel development 

branching models. There are structured models for branching, like Git Flow, GitHub Flow, and GitLab Flow, that 

deal with structured parallel development lines related to features, bug fixing, and releases. Such models can 

enable a developer to keep the quality and stability of the code intact, still having the possibility for innovative 

and iterative improvements. Each model has different strengths and is suited to different project types and team 

dynamics. 

These, in turn, are then combined with branching models that underpin the critical release strategies to come up 

with software that deploys both reliably and efficiently. There are clear and distinct strategies related to 

Continuous Integration, Continuous Deployment, feature toggles, and blue-green deployment essential in modern 

DevOps practices. They reduce the potential for deployment failure and decrease the time it takes from 

development to production, enabling features and updates to be exposed to end users much faster. 

Different Git branching models and release strategies will be reviewed in a discussion of their respective benefits 

versus the difficulties of maintenance involved, along with best practices. Hence, with these nuances, software 

https://www.ijirmps.org/
mailto:an.priyankagd@gmail.com


Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 2 

 

development teams will have informed decisions on how to improve workflow and code quality during release 

processes. This will become very important as teams are increasingly working according to agile methodologies 

and DevOps practices to keep up with rapid software delivery demands [5]. 

 

Methods 

This paper employs a structured methodology to analyze various Git branching models and release strategies, 

aiming to provide a comprehensive comparison that is both theoretically grounded and practically applicable. 

The methodology used is an in-depth literature review, case studies, and analysis concerning the tools and 

frameworks applied in software development, etc. 

The literature review involves sourcing and reviewing technical papers, books, and authoritative articles 

published before 2022. These sources shall present a historical and theoretical context for the investigated 

branching models and release strategies. Drawing on peer-reviewed literature and generally established 

publications, this review secures a strong base of prior established knowledge for the analysis. 

Case studies of real software development projects illustrate how different branching models and release 

strategies are implemented. They give insights into the problems development teams face and how they tackle 

them. Moreover, they provide practical examples of the benefits and limitations of each approach, thus helping 

to ground the theoretical discussion in real-world applications. 

This will be further considered in tools and frameworks like Git itself or CI/CD platforms such as Jenkins, Travis 

CI, and GitLab CI, which clearly state how they support both branching and release strategies. Because of the 

analysis of these tools, their integration into several workflows and their extent of process automation and 

facilitation will be explored. 

Therefore, a mixed-method approach, literature review, case studies analysis, and tools examination are adopted 

to try and supply a balanced view deep in theory and rich in practical insight. This methodology will ensure the 

paper answers the objectives by providing a holistic understanding of the subject; it would, therefore, be 

meaningful in adding meaningful conclusions and actionable recommendations [5]. 

 

Results and Discussion 

Git Branching Models 

Git branching models are instrumental in running the code for software development projects. They specify how 

collaboration between developers will go regarding feature development, bug fixing, and the release of stable 

software versions. This paper will further explain three majorly used Git branching models: Git Flow, GitHub 

Flow, and GitLab Flow. All their structures, use cases and benefits against one another will be covered [5]. 

1. Git Flow 

Git Flow, proposed by Vincent Driessen in 2010, is an example of quite a robust branching model. It will fit any 

project with at least a reasonably well-defined release cycle. There are two main branches: master and develop, 

with some supporting ones: feature, release, and hotfix. The develop branch would serve as the integration branch 

for features, and the master would hold production-ready code. Development of new features takes place in 

feature branches. After the development of the feature is finished, it is merged into development. From there, it 

is merged into release branches before finally being merged into the master for deployment. This model is 

appropriate for projects with planned releases, and a stable master branch is necessary [4]. 

https://www.ijirmps.org/


Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 3 

 

 
It has five main types of branches as the key components of the Git Flow model: Master for production-ready 

code, Release for preparing new releases, develop for integrating features, Feature for developing single features, 

and Hotfix for urgent fixes. It is useful in projects which have a regular release cycle. 

2. GitHub Flow 

Well, GitHub Flow is a lightweight, simpler model designed for continuous deployment environments. In contrast 

with Git Flow, there is only one main branch, usually major or master; all feature development happens in short-

lived branches. Once a feature is ready, it will be merged directly into the main branch, often after a peer review 

and automated tests. Done. It's pretty easy to adopt, especially in small teams or projects with fast iteration cycles 

[6]. 

 
The GitHub Flow model is centralized around the main branch, while the branch intended for all development is 

integrated into it after the completion of feature branches. Changes are passed through the process of being 

reviewed by the pull requests. In addition, continuous integration and frequent deployment are stressed a lot, so 

it is appropriate for projects that need development or deployment on a high-frequency basis. 

3. GitLab Flow 

GitLab Flow is a hybrid somewhere between Git Flow and GitHub Flow. Augmented with branches for staging, 

production, and other environments related to the development branch. Features are developed on separate 

branches and merged into the environment branches, depending on the deployment stage. GitLab Flow is 

especially valuable for teams that need to deploy multiple environments and would like to keep clear distinctions 

between them. It creates complex workflows, providing feature toggles, canary releases, and versatility for simple 

and complex projects [3]. 

 

https://www.ijirmps.org/


Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 4 

 

GitLab Flow integrates various environments by using the Production, Staging, and Development branches. 

Feature branches are merged into the Development branch, which then flows into Staging for testing before final 

deployment to Production. This model supports complex workflows with multiple deployment stages. 

 

Release Strategies  

Continuous Integration/Continuous Deployment (CI/CD) 

One of the intrinsic strategies of any modern software development process has to be based on Continuous 

Integration and Continuous Deployment. Essentially, it means that CI is a process of automatically integrating 

all source code changes from different contributors into some central repository. Every change will trigger an 

automated build and test for compatibility of the code with the rest of the codebase. CD will push the resultant 

changes through automated deployment into production environments. Successful builds are automatically 

deployed, which minimizes time-developed-to-time-deployed. Both of these CI/CD strategies automate 

development to a large extent, reducing manual intervention and increasing the frequency and reliability of 

deployments [8]. 

 

Feature Flags 

Feature flags (or feature toggles) allow developers to turn on/off features of an application without having to 

deploy new code. This strategy comes in very handy when features are tested in production or incomplete features 

are deployed. Development teams can turn features on or off to gradually release new functionality for testing, 

catching early issues and maintaining control of the user experience. Feature toggles support flexibility and 

control over incremental changes, reducing deployment risk [1]. 

 

Canary Releases 

A canary release is the release of new features to just a small subset of users prior to full deployment. This 

approach enables teams to push new features to a live environment with a controlled group of users, easily 

noticing visible problems and obtaining feedback in the process. In case of success, the feature is gradually 

released to the remaining users. This method reduces the risk related to new releases by catching all problems in 

the early stages and making the rollout process smoother. 

 

Blue-Green Deployments 

Blue-green deployments are a solid mechanism for production releases that involve minimal downtime. Here, 

two identical production environments are maintained: one blue and the other green. The new version of the 

application would then be deployed to the inactive environment. Assuming the new version is validated, the 

traffic will be switched from the active environment to the new environment. This approach ensures quick 

rollback in case problems arise, hence a smooth transition between versions that has a very minimal effect on 

users [8]. 

 
Figure 1 Interaction Between Release Strategies and Branching Models 

The diagram above illustrates the integration of various release strategies with Git branching models. CI/CD will 

raise the degree of automated deployment within models such as Git Flow and GitHub Flow. Feature Toggles 

enable controlled feature releases across branches. Canary Releases and Blue-Green Deployments manage risks 

https://www.ijirmps.org/


Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 5 

 

by gradually rolling out a new feature in a manner that makes version transitions smooth. These strategies will 

optimize deployment processes and branch management. 

 

Challenges and Best Practices 

Challenges 

Any Git branching model and release strategy usually come with various hiccups. One of the most notable 

concerns would be concerning merge conflicts. Often, the work of several developers will overlap with each other 

or even conflict with each other on different branches. Such merging needs to be done manually, a time-

consuming affair in itself. This can easily lead to bugs or inconsistency within the code. Another challenge is 

branch management, which becomes really vital especially for large projects with a high number of branches.  If 

you are not careful, you may mismanage, track, and mix changes from branches, thereby ending up a little 

confused and making errors. Consistency in the various environments, including development environments, 

staging environments, and production, can also be a challenge to maintain. It is conceivable that code which is in 

one environment, let's say, works perfectly fine but could stop working on another due to a lack of a correct 

strategy for consistency, which might cause integration problems and uncertain deployments [7]. 

 

 
 

This graph shows the response related to the frequency of common problems in the Git branching model. The 

highest-rated issue is merge conflicts, which was chosen by 40% of the students. This was followed by problems 

managing branches at 25%. Consistency across environments and integration problems ranked lower but were 

still major concerns, at 20% and 15%, respectively. 

 

Best Practices 

The following are practices that can be engaging to mitigate these challenges. Frequent and small commits are 

recommended since they alert developers to problems early by allowing them to fix them soonest. Smaller 

changes are easier to merge and result in fewer conflicts than larger, less frequent commits. Introduce a branch 

naming convention and clear branch policy in order to support effective management of branches. This 

consistency in naming will help to understand the purpose and state of the branch. Clear policies will detail how 

and when branches are to be merged or deleted. Automated testing and Continuous Integration (CI) ensure high 

0%

10%

20%

30%

40%

50%

Merge Conflicts Branch Management Consistency Across
Environments

Code Integration
Issues

Frequency of Common Challenges in Git 
Branching Models

https://www.ijirmps.org/


Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 6 

 

quality and reliability: automated tests can catch issues early on and significantly reduce the likelihood that bugs 

make it into production. CI systems build and automatically test changes in code, giving a developer direct 

feedback as soon as possible on the changes. Code reviews, as well as peer reviews, are major components that 

ensure the ongoing consistency of the code. With multiple eyes constantly gazing at the changed lines and a file, 

one tends to identify issues that may occur once merged into the main base of the code [2]. 

 

 
 

The graph illustrates the efficiency of best practices in mitigating challenges in Git branching models: frequent 

and small commits top the list at 30%, while at 25%, it is automated testing/CI. The rest would then be naming 

conventions for branches and code reviews at 25% and 20%, respectively, in terms of effectiveness in mitigating 

challenges. 

 

Automation Tools 

Automation tools remarkably aid in administering these processes. These CI/CD pipelines reduce the manual 

human effort taken through the process of testing and deployment. At the same time, tools for merge conflict 

detection can automatically detect and resolve conflicts in the code, hence easing the process. Features for branch 

tracking, management, and visualization in branch management tools make it quite easy to maintain and sustain 

an organized and efficient workflow. With these best practices and tools implemented, the team is going to handle 

the problems associated with Git branching models and release strategies in a more reliable and efficient mode 

of development [9]. 

 

Conclusion 

In this paper, we have considered a number of Git branching models: Git Flow, GitHub Flow, and GitLab Flow, 

each tuned to meet different development needs and environments. Git Flow, due to the structured approach, is 

intended for projects with well-defined release cycles. The simplicity of GitHub Flow caters to scenarios of 

continuous deployment. GitLab Flow merges elements from both to give flexibility to teams working across 

multiple environments. 

We also looked in detail at the major release strategies, including CI/CD, feature toggles, canary releases, and 

blue-green deployments, and their interaction with branching models. One of the very special benefits of CI/CD 

0%

8%

15%

23%

30%

38%

Effectiveness (%)

Effectiveness of Best Practices in Mitigating 
Challenges

Frequent and Small Commits Branch Naming Conventions

Automated Testing and CI Code Reviews and Peer Reviews

https://www.ijirmps.org/


Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 7 

 

is that it automates deployment and testing to quicken the development process. Besides the flexibility that feature 

toggles and Canary Releases add during the release of new features, Blue-Green Deployments guarantee the least 

possible downtime and smooth transitions between versions. 

The discussion provided very clear insight into handling common issues related to merge conflicts and branch  

management through challenges and best practices in frequent commits, automated testing, and naming 

conventions. Such practices mitigate the problems that could have emerged and ensure better workflow 

efficiency. 

The proper choice of the branching model and release strategy becomes very critical for any software 

development team in managing complex projects and maintaining the quality of the code. Future trends may 

include more sophisticated automation and integration techniques that adapt to evolving development practices 

and technologies. With further evolution in software development, understanding the application of these 

branching and release strategies will turn out to be paramount to achieving efficient and reliable software delivery. 

 

References 

1. Arve, D. (2010). Branching strategies with distributed version control in agile projects. Website. 

http://fileadmin. cs. lth. se/cs/Personal/lars_bendix/research/ascm. 

https://fileadmin.cs.lth.se/cs/Personal/Lars_Bendix/Research/ASCM/In-depth/Arve-2010.pdf 

2. Jabrayilzade, Elgun, Fatih Sevban Uyanik, Emre Sülün, and Eray Tüzün. "An Interactive Approach to 

Teaching Git Version Control System." In HICSS, pp. 1-10. (2022, January). 

https://www.researchgate.net/profile/Elgun-

Jabrayilzade/publication/357684242_An_Interactive_Approach_to_Teaching_Git_Version_Control_Syste

m/links/61da7f3ed4500608169b56aa/An-Interactive-Approach-to-Teaching-Git-Version-Control-

System.pdf 

3. Liberty, J., & Galloway, J. (2021). Git for Programmers: Master Git for effective implementation of version 

control for your programming projects. Packt Publishing Ltd. 

https://books.google.co.ke/books?hl=en&lr=&id=RVU2EAAAQBAJ&oi=fnd&pg=PP1&dq=Liberty,+J.,+

%26+Galloway,+J.+(2021).+Git+for+Programmers:+Master+Git+for+effective+implementation+of+versio

n+control+for+your+programming+projects.+Packt+Publishing+Ltd.&ots=Kq_tFsi1WR&sig=-

SSwMxR_DZe_a3_JAFrDoJZmzyo&redir_esc=y#v=onepage&q&f=false 

4. Montalvillo, L., & Díaz, O. (2015, July). Tuning GitHub for SPL development: branching models & 

repository operations for product engineers. In Proceedings of the 19th International Conference on Software 

Product Line (pp. 111-120). https://dl.acm.org/doi/abs/10.1145/2791060.2791083 

5. Narebski, J. (2016). Mastering Git. Packt Publishing Ltd. 

https://books.google.co.ke/books?hl=en&lr=&id=3vjJDAAAQBAJ&oi=fnd&pg=PP1&dq=Git+branching+

and+release+strategies&ots=P6gH_1mu86&sig=qAZhX2jKnpPU-

q9WOIkUTGvunSE&redir_esc=y#v=onepage&q=Git%20branching%20and%20release%20strategies&f=f

alse 

6. Rios, J. C. C., Embury, S. M., & Eraslan, S. (2022, January). A unifying framework for the systematic analysis 

of git workflows. Information and Software Technology, 145, 106811. 

https://www.sciencedirect.com/science/article/abs/pii/S0950584921002433 

7. Scott, C., & Ben, S. (2016). Pro Git. https://dlib.hust.edu.vn/handle/HUST/23964 

https://www.ijirmps.org/
https://fileadmin.cs.lth.se/cs/Personal/Lars_Bendix/Research/ASCM/In-depth/Arve-2010.pdf
https://www.researchgate.net/profile/Elgun-Jabrayilzade/publication/357684242_An_Interactive_Approach_to_Teaching_Git_Version_Control_System/links/61da7f3ed4500608169b56aa/An-Interactive-Approach-to-Teaching-Git-Version-Control-System.pdf
https://www.researchgate.net/profile/Elgun-Jabrayilzade/publication/357684242_An_Interactive_Approach_to_Teaching_Git_Version_Control_System/links/61da7f3ed4500608169b56aa/An-Interactive-Approach-to-Teaching-Git-Version-Control-System.pdf
https://www.researchgate.net/profile/Elgun-Jabrayilzade/publication/357684242_An_Interactive_Approach_to_Teaching_Git_Version_Control_System/links/61da7f3ed4500608169b56aa/An-Interactive-Approach-to-Teaching-Git-Version-Control-System.pdf
https://www.researchgate.net/profile/Elgun-Jabrayilzade/publication/357684242_An_Interactive_Approach_to_Teaching_Git_Version_Control_System/links/61da7f3ed4500608169b56aa/An-Interactive-Approach-to-Teaching-Git-Version-Control-System.pdf
https://books.google.co.ke/books?hl=en&lr=&id=RVU2EAAAQBAJ&oi=fnd&pg=PP1&dq=Liberty,+J.,+%2526+Galloway,+J.+(2021).+Git+for+Programmers:+Master+Git+for+effective+implementation+of+version+control+for+your+programming+projects.+Packt+Publishing+Ltd.&ots=Kq_tFsi1WR&sig=-SSwMxR_DZe_a3_JAFrDoJZmzyo&redir_esc=y%23v=onepage&q&f=false
https://books.google.co.ke/books?hl=en&lr=&id=RVU2EAAAQBAJ&oi=fnd&pg=PP1&dq=Liberty,+J.,+%2526+Galloway,+J.+(2021).+Git+for+Programmers:+Master+Git+for+effective+implementation+of+version+control+for+your+programming+projects.+Packt+Publishing+Ltd.&ots=Kq_tFsi1WR&sig=-SSwMxR_DZe_a3_JAFrDoJZmzyo&redir_esc=y%23v=onepage&q&f=false
https://books.google.co.ke/books?hl=en&lr=&id=RVU2EAAAQBAJ&oi=fnd&pg=PP1&dq=Liberty,+J.,+%2526+Galloway,+J.+(2021).+Git+for+Programmers:+Master+Git+for+effective+implementation+of+version+control+for+your+programming+projects.+Packt+Publishing+Ltd.&ots=Kq_tFsi1WR&sig=-SSwMxR_DZe_a3_JAFrDoJZmzyo&redir_esc=y%23v=onepage&q&f=false
https://books.google.co.ke/books?hl=en&lr=&id=RVU2EAAAQBAJ&oi=fnd&pg=PP1&dq=Liberty,+J.,+%2526+Galloway,+J.+(2021).+Git+for+Programmers:+Master+Git+for+effective+implementation+of+version+control+for+your+programming+projects.+Packt+Publishing+Ltd.&ots=Kq_tFsi1WR&sig=-SSwMxR_DZe_a3_JAFrDoJZmzyo&redir_esc=y%23v=onepage&q&f=false
https://dl.acm.org/doi/abs/10.1145/2791060.2791083
https://books.google.co.ke/books?hl=en&lr=&id=3vjJDAAAQBAJ&oi=fnd&pg=PP1&dq=Git+branching+and+release+strategies&ots=P6gH_1mu86&sig=qAZhX2jKnpPU-q9WOIkUTGvunSE&redir_esc=y%23v=onepage&q=Git%2520branching%2520and%2520release%2520strategies&f=false
https://books.google.co.ke/books?hl=en&lr=&id=3vjJDAAAQBAJ&oi=fnd&pg=PP1&dq=Git+branching+and+release+strategies&ots=P6gH_1mu86&sig=qAZhX2jKnpPU-q9WOIkUTGvunSE&redir_esc=y%23v=onepage&q=Git%2520branching%2520and%2520release%2520strategies&f=false
https://books.google.co.ke/books?hl=en&lr=&id=3vjJDAAAQBAJ&oi=fnd&pg=PP1&dq=Git+branching+and+release+strategies&ots=P6gH_1mu86&sig=qAZhX2jKnpPU-q9WOIkUTGvunSE&redir_esc=y%23v=onepage&q=Git%2520branching%2520and%2520release%2520strategies&f=false
https://books.google.co.ke/books?hl=en&lr=&id=3vjJDAAAQBAJ&oi=fnd&pg=PP1&dq=Git+branching+and+release+strategies&ots=P6gH_1mu86&sig=qAZhX2jKnpPU-q9WOIkUTGvunSE&redir_esc=y%23v=onepage&q=Git%2520branching%2520and%2520release%2520strategies&f=false
https://www.sciencedirect.com/science/article/abs/pii/S0950584921002433
https://dlib.hust.edu.vn/handle/HUST/23964


Volume 10 Issue 5                     @ September - October 2022 IJIRMPS | ISSN: 2349-7300 

 

IJIRMPS2205231283          Website: www.ijirmps.org Email: editor@ijirmps.org 8 

 

8. Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous integration, delivery and deployment: a systematic 

review on approaches, tools, challenges and practices. IEEE access, 5, 3909-3943. 

https://ieeexplore.ieee.org/abstract/document/7884954 

9. Shore, J., & Warden, S. (2021). The art of agile development. " O'Reilly Media, Inc.". 

https://books.google.co.ke/books?hl=en&lr=&id=kXZIEAAAQBAJ&oi=fnd&pg=PP1&dq=The+Art+of+A

gile+Development&ots=M2NfyySt5e&sig=ky3G6YXK1FDwsFrEPHFnFwvy7Tc&redir_esc=y#v=onepag

e&q=The%20Art%20of%20Agile%20Development&f=false 

 

 

 

 

 

https://www.ijirmps.org/
https://ieeexplore.ieee.org/abstract/document/7884954
https://books.google.co.ke/books?hl=en&lr=&id=kXZIEAAAQBAJ&oi=fnd&pg=PP1&dq=The+Art+of+Agile+Development&ots=M2NfyySt5e&sig=ky3G6YXK1FDwsFrEPHFnFwvy7Tc&redir_esc=y%23v=onepage&q=The%2520Art%2520of%2520Agile%2520Development&f=false
https://books.google.co.ke/books?hl=en&lr=&id=kXZIEAAAQBAJ&oi=fnd&pg=PP1&dq=The+Art+of+Agile+Development&ots=M2NfyySt5e&sig=ky3G6YXK1FDwsFrEPHFnFwvy7Tc&redir_esc=y%23v=onepage&q=The%2520Art%2520of%2520Agile%2520Development&f=false
https://books.google.co.ke/books?hl=en&lr=&id=kXZIEAAAQBAJ&oi=fnd&pg=PP1&dq=The+Art+of+Agile+Development&ots=M2NfyySt5e&sig=ky3G6YXK1FDwsFrEPHFnFwvy7Tc&redir_esc=y%23v=onepage&q=The%2520Art%2520of%2520Agile%2520Development&f=false

