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Abstract 

Etcd is a distributed key-value store that provides a reliable way to store and manage data in a 

distributed system.Etcd is a highly available, distributed key-value store that enables reliable data 

management in distributed systems. It provides a fault-tolerant and scalable solution for storing and 

retrieving data, making it an ideal choice for modern distributed applications. Etcd's core features 

include Distributed architecture, Key-value data model, High availability and fault tolerance, 

Scalability and performance, Secure data storage and transmission, Simple and intuitive API. Etcd is 

a distributed, consensus-based key-value store built on top of the Raft consensus algorithm. It 

provides a hierarchical namespace for storing and retrieving data, with support for transactions, 

watches, and leases. Etcd's architecture includes A cluster of nodes that store and replicate data. A 

leader node that manages the cluster and handles client requests. A consensus algorithm that ensures 

data consistency and availability.A client API for interacting with the etcd cluster.Notification latency 

refers to the delay between the occurrence of an event and the notification of that event to the 

interested parties. In other words, it is the time taken for a notification to be delivered from the 

source of the event to the recipient.Notification throughput is The average number of notifications 

delivered per second.Memory usage is the average amount of memory used by the system.Notification 

latency metric measures the delay between the occurrence of an event and the notification of that 

event to the interested parties.The existing architecture is using Levelized Breadth First Search 

Algorithm for watch mechanism and is having high notification latency issues. This paper addresses 

this issue by implementing the watch mechanism in the ETCD by Approximate Breadth First 

SearchAlgorithm.  

 

Keywords: ETCD, Breadth First Search Algorithm, Levelized Breadth Search algorithm, 

Approximate BFS (ABFS) algorithm, Controllers, Schedulers, Graphs. 

 

INTRODUCTION 

In a bustling distributed system, etcd [1], the reliable key-value store, held the reins. The API server, a 

gateway to the system, received requests and updates. Meanwhile, the controller, a diligent worker, ensured 

the system's desired state was maintained. The scheduler, a master of resource allocation, decided which 

tasks to run and where. As changes occurred, the watching mechanism, etcd's trusty sidekick, notified the 

controller and scheduler. The controller reacted swiftly, updating the system's state. The scheduler adjusted 

its plans, allocating resources accordingly. Etcd, the source of truth, stored the updated state. The API server 
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relayed the changes to interested parties. The watching mechanism continued to monitor, ever vigilant. As 

the system hummed along, the controller, scheduler, and etcd worked in harmony. The watching mechanism 

[2] ensured that each component remained informed. Together, they formed a robust and efficient 

distributed system.In the Kubernetes ecosystem, this harmonious dance was crucial. The controller and 

scheduler worked together to ensure the desired state of the Kubernetes cluster. As pods were created and 

deleted, the watching mechanism notified the controller, which updated the Kubernetes cluster's state. Etcd, 

the reliable key-value store [3], stored the updated state, ensuring that the Kubernetes cluster remained 

consistent. The API server relayed the changes to interested parties, such as Kubernetes deployments and 

services. The scheduler adjusted its plans, allocating resources accordingly, to ensure the Kubernetes cluster 

remained efficient. Kubernetes relied on this intricate ballet to maintain its scalability and reliability [4]. The 

watching mechanism continued to monitor, ever vigilant, ensuring that the Kubernetes cluster remained in 

sync. As the Kubernetes ecosystem evolved, this harmonious dance remained essential. 

 

LITERATURE REVIEW 

Etcd is a highly available, distributed key-value store that provides a reliable way to store and manage data 

in a distributed system. At its core, etcd is designed to be a fault-tolerant and scalable solution for storing 

and retrieving data.In a Kubernetes cluster, etcd plays a critical role in storing and managing the cluster's 

state. The Kubernetes API server, which is responsible for handling incoming requests and updates, relies 

on etcd to store and retrieve data. Etcd's distributed architecture allows it to scale horizontally [5], making it 

an ideal solution for large-scale distributed systems. The etcd cluster consists of multiple nodes, each of 

which stores a copy of the data. This ensures that the data remains available even in the event of node 

failures.  

The etcd watching mechanism [6] is a critical component of the system, allowing clients to receive 

notifications when changes occur to the data. This mechanism is built on top of the levelized Breadth-First 

Search (BFS) [7] algorithm, which enables efficient and scalable watching of the data. The levelized BFS 

algorithm [8] is a variant of the traditional BFS algorithm, optimized for etcd's distributed architecture. It 

allows etcd to efficiently traverse the graph of watched keys, ensuring that notifications are delivered in a 

timely and efficient manner. In a Kubernetes cluster, the etcd watching mechanism is used by the controller 

and scheduler components to receive notifications when changes occur to the cluster's state.  

The controller is responsible for ensuring that the cluster's desired state is maintained, while the scheduler is 

responsible for allocating resources to run the workload. The etcd API provides a simple and efficient way 

for clients to interact with the etcd cluster. The API allows clients to store and retrieve data, as well as watch 

for changes to the data. The etcd API is used by the Kubernetes API server to store and retrieve data, as well 

as by the controller and scheduler components to receive notifications. In summary, etcd is a highly 

available, distributed key-value store that provides a reliable way to store and manage data in a distributed 

system. Its distributed architecture, watching mechanism, and levelized BFS algorithm make it an ideal 

solution for large-scale distributed systems, such as Kubernetes clusters. Etcd's integration with Kubernetes 

is seamless, providing a reliable and efficient way to store and manage the cluster's state.  

The etcd watching mechanism and levelized BFS algorithm enable efficient and scalable watching of the 

data, ensuring that notifications are delivered in a timely and efficient manner.As a result, etcd has become a 

critical component of the Kubernetes ecosystem, providing a reliable and efficient way to store and manage 

data in a distributed system. Its scalability, reliability, and efficiency make it an ideal solution for large-scale 

distributed systems.In graph theory, traversal techniques are algorithms used to visit nodes in a graph [10]. 
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The primary goal of traversal techniques is to visit each node in the graph exactly once.Graph traversal 

techniques can be broadly classified into two categories: Breadth-First Search (BFS) and Depth-First Search 

(DFS).Breadth-First Search (BFS) is a traversal technique that visits all the nodes at the current level before 

moving on to the next level. In BFS, a queue data structure is used to keep track of the nodes to be visited. 

The algorithm starts by visiting the root node and then explores all the neighboring nodes. Once all the 

neighboring nodes have been visited, the algorithm moves on to the next level and repeats the process. 

Depth-First Search (DFS) [11]is a traversal technique that visits as far as possible along each branch before 

backtracking. In DFS, a stack data structure is used to keep track of the nodes to be visited. The algorithm 

starts by visiting the root node and then explores as far as possible along each branch. Once the algorithm 

reaches a dead end, it backtracks to the previous node and explores the next branch.Levelized Breadth-First 

Search[12]is a variant of BFS that is optimized for distributed systems. In levelized BFS, the graph is 

divided into levels, and the algorithm visits all the nodes at the current level before moving on to the next 

level. This approach reduces the number of messages exchanged between nodes, making it more efficient 

for distributed systems.Traversal techniques [13] have numerous applications in computer science, including 

network topology discovery, web crawling, and social network analysis. In addition, traversal techniques are 

used in various fields, such as biology, chemistry, and physics, to analyze complex networks and systems. 

In conclusion, graph traversal techniques are essential algorithms in graph theory that enable the efficient 

exploration of nodes in a graph. BFS and DFS are two fundamental traversal techniques that have numerous 

applications in computer science and other fields. The choice of traversal technique depends on the specific 

application and the characteristics of the graph. For example, BFS is often used in network topology 

discovery and web crawling, where the goal is to visit all nodes in the graph. On the other hand, DFS is 

often used in solving puzzles and finding connected components in a graph.In addition to BFS and DFS, 

there are other traversal techniques, such as Dijkstra's algorithm[14][21] and Bellman-Ford algorithm, 

which are used for finding the shortest path between two nodes in a weighted graph.Traversal techniques are 

also used in various fields, such as biology, chemistry, and physics, to analyze complex networks and 

systems. For example, in biology, traversal techniques are used to analyze the structure of proteins and the 

behavior of complex biological systems.In computer science, traversal techniques are used in various 

applications, such as network routing, web search, and social network analysis. For example, in network 

routing, traversal techniques are used to find the shortest path between two nodes in a network.In web 

search, traversal techniques are used to crawl the web and index web pages. In social network analysis, 

traversal techniques are used to analyze the structure of social networks and the behavior of individuals 

within those networks.In addition to these applications, traversal techniques are also used in various other 

fields, such as finance, economics, and logistics. For example, in finance, traversal techniques are used to 

analyze the structure of financial networks and the behavior of financial markets.In economics, traversal 

techniques are used to analyze the structure of economic networks and the behavior of economic systems. In 

logistics, traversal techniques are used to optimize the routing of vehicles and the scheduling of deliveries.In 

conclusion, traversal techniques are essential algorithms in graph theory that enable the efficient exploration 

of nodes in a graph. These techniques have numerous applications in computer science and other fields, and 

are used to solve a wide range of problems, from network routing and web search to social network analysis 

[15][22] and financial modeling.The study of traversal techniques is an active area of research, with new 

algorithms and techniques being developed to solve specific problems and improve the efficiency of 

existing algorithms.As the complexity of networks and systems continues to grow, the importance of 

traversal techniques will only continue to increase. Graph theory algorithms, such as Breadth-First Search 

(BFS) and Depth-First Search (DFS), are fundamental techniques used to traverse and search graphs. These 

algorithms have numerous applications in computer science, including network topology discovery, web 
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crawling, and social network analysis. BFS is a traversal technique that visits all the nodes at the current 

level before moving on to the next level. In BFS, a queue data structure is used to keep track of the nodes to 

be visited. The algorithm starts by visiting the root node and then explores all the neighboring nodes. Once 

all the neighboring nodes have been visited, the algorithm moves on to the next level and repeats the 

process. Levelized BFS is a variant of BFS that is optimized for distributed systems. In levelized BFS, the 

graph is divided into levels, and the algorithm visits all the nodes at the current level before moving on to 

the next level. This approach reduces the number of messages exchanged between nodes, making it more 

efficient for distributed systems. Approximate BFS (ABFS) is another variant of BFS that is optimized for 

large-scale graphs. In ABFS, the algorithm uses a probabilistic approach to traverse the graph, which 

reduces the computational overhead. ABFS is particularly useful for applications where the graph is too 

large to be traversed exactly. The transformation from BFS to levelized BFS involves dividing the graph 

into levels and modifying the algorithm to visit all the nodes at the current level before moving on to the 

next level. This approach reduces the number of messages exchanged between nodes, making it more 

efficient for distributed systems.The transformation from BFS to ABFS involves modifying the algorithm to 

use a probabilistic approach to traverse the graph. This approach reduces the computational overhead and 

makes it more efficient for large-scale graphs.In conclusion, graph theory algorithms, such as BFS and DFS, 

are fundamental techniques used to traverse and search graphs [16]. Levelized BFS and ABFS are variants 

of BFS that are optimized for distributed systems and large-scale graphs, respectively. The transformation 

from BFS to levelized BFS and ABFS involves modifying the algorithm to reduce the computational 

overhead and make it more efficient for specific applications.The study of graph theory algorithms is an 

active area of research, with new algorithms and techniques being developed to solve specific problems and 

improve the efficiency of existing algorithms.As the complexity of graphs and networks continues to grow, 

the importance of graph theory algorithms will only continue to increase.Graph theory algorithms have 

numerous applications in computer science, including network topology discovery, web crawling, and social 

network analysis.In addition to these applications, graph theory algorithms are also used in various other 

fields, such as biology, chemistry, and physics, to analyze complex networks and systems.In biology, graph 

theory algorithms are used to analyze the structure of proteins and the behavior of complex biological 

systems.In chemistry, graph theory algorithms [17][23] are used to analyze the structure of molecules and 

the behavior of chemical reactions.In physics, graph theory algorithms are used to analyze the behavior of 

complex physical systems, such as networks of particles and fields.In conclusion, graph theory algorithms 

are fundamental techniques used to traverse and search graphs. These algorithms have numerous 

applications in computer science and other fields, and are used to solve a wide range of problems, from 

network topology discovery and web crawling to social network analysis and financial modeling. 

 
Fig: 1.ETCD Achitecture 
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Fig. 1. shows the ETCD architecture, it is using WAL algorithm for storing and retrieving key value 

information. It is using GPRC protocol for communication. It shows the leader selection module , In etcd, 

leader election is a process where a cluster of etcd nodes selects one node to be the leader. The leader [18] is 

responsible for managing the cluster, handling client requests, and replicating data to other nodes.1. Initial 

Election: When an etcd cluster is first formed, each node will attempt to become the leader. The node with 

the highest election priority (which can be configured) will become the leader.2. Leader Heartbeats: The 

leader node will periodically send heartbeat messages to other nodes in the cluster. These heartbeats indicate 

that the leader is still alive and functioning.3. Follower Election: If the leader node fails or becomes 

unavailable, the remaining nodes will detect the loss of heartbeats and initiate a new leader election. The 

node with the highest election priority [19][24] will become the new leader.4. Leader Transition: Once a 

new leader is elected, it will take over the responsibilities of the previous leader, including managing the 

cluster, handling client requests, and replicating data. Etcd uses a consensus algorithm called Raft to manage 

leader election and ensure that the cluster remains consistent and available. 

 

Fig2: Scheduler Controller API Server ETCD 

Fig 2. Shows the interaction among the components API Server , controller , etcd and scheduler. API Server 

receives requests from users and validates them.Validated requests are stored in etcd.Controller watches 

etcd for changes to the desired state. When a change is detected, the Controller queries the API Server for 

the current state. The API Server returns the current state to the Controller. The Controller calculates the 

difference between the desired and current states. The Controller [20] sends instructions to the Scheduler to 

create or update resources. The Scheduler receives the instructions and schedules the tasks on available 

nodes. The Scheduler updates the node's status in etcd. The Controller watches etcd for node status updates. 

When a node's status changes, the Controller queries the API Server for the updated node status. The API 

Server returns the updated node status to the Controller. The Controller updates the desired state in etcd 

based on the updated node status. Etcd notifies the Controller of the updated desired state.The cycle repeats, 

ensuring the cluster remains in the desired state. 

package main 

import ( 

 "context" 

 "fmt" 

 "log" 

 "sync" 

) 
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const ( 

 dialTimeout = 5 * time.Second 

) 

type Watcher struct { 

 client  *clientv3.Client 

 watches map[string]struct{} 

 mu       sync.RWMutex 

} 

func NewWatcher(client *clientv3.Client) *Watcher { 

 return &Watcher{ 

  client:  client, 

  watches: make(map[string]struct{}), 

 } 

} 

func (w *Watcher) Watch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 if _, ok := w.watches[key]; ok { 

  return nil 

 } 

 w.watches[key] = struct{}{} 

 

 go func() { 

  ch := w.client.Watch(ctx, key) 

  for resp := range ch { 

   for _, ev := range resp.Events { 

    fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key, ev.Kv.Value) 

   } 

  } 

 }() 

 return nil 

} 

func (w *Watcher) Unwatch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 
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 delete(w.watches, key) 

. return nil 

} 

func levelizedBFS(w *Watcher, key string) { 

 visited := make(map[string]bool) 

 queue := []string{key} 

 for len(queue) > 0 { 

  currKey := queue[0] 

  queue = queue[1:] 

 

  if visited[currKey] { 

   continue 

  } 

  visited[currKey] = true 

.  w.Watch(context.Background(), currKey) 

.  resp, err := w.client.Get(context.Background(), currKey) 

  if err != nil { 

   log.Println(err) 

   continue 

  } 

  for _, kv := range resp.Kvs { 

   queue = append(queue, string(kv.Key)) 

  } 

 } 

} 

.func main() { 

 client, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: dialTimeout, 

 }) 

 if err != nil { 

  log.Fatal(err) 

 } 

 w := NewWatcher(client) 

 levelizedBFS(w, "/") 

 select {} 

} 
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This code creates a Watcher struct that uses the etcd client to watch for changes to keys in the etcd store. 

The levelizedBFS function implements the levelized BFS algorithm to traverse the etcd store and watch for 

changes to keys. 

 

package main 

 

import ( 

 "context" 

 "fmt" 

 "log" 

 "sync" 

 "time" 

 

) 

 

const ( 

 dialTimeout = 5 * time.Second 

) 

 

var ( 

 notificationLatency = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "notification_latency", 

  Help:    "Notification latency in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

 notificationThroughput = promauto.NewCounter(prometheus.CounterOpts{ 

  Name: "notification_throughput", 

  Help: "Number of notifications per second", 

 }) 

 memoryUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "memory_usage", 

  Help: "Memory usage in megabytes", 

 }) 

 cpuUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "cpu_usage", 

  Help: "CPU usage as a percentage", 

 }) 

 averageWatcherNotificationTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "average_watcher_notification_time", 

  Help:    "Average time taken to notify watchers in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

 watcherNotificationSuccessRate = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "watcher_notification_success_rate", 

  Help: "Success rate of watcher notifications as a percentage", 

 }) 
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 graphTraversalTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "graph_traversal_time", 

  Help:    "Time taken to traverse the graph in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

) 

 

type Watcher struct { 

 client  *clientv3.Client 

 watches map[string]struct{} 

 mu       sync.RWMutex 

} 

 

func NewWatcher(client *clientv3.Client) *Watcher { 

 return &Watcher{ 

  client:  client, 

  watches: make(map[string]struct{}), 

 } 

} 

func (w *Watcher) Watch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 if _, ok := w.watches[key]; ok { 

  return nil 

 } 

 

 w.watches[key] = struct{}{} 

 go func() { 

  ch := w.client.Watch(ctx, key) 

  for resp := range ch { 

   for _, ev := range resp.Events { 

    fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key, ev.Kv.Value) 

 

       startTime := time.Now() 

    notificationLatency.Observe(float64(time.Since(startTime).Milliseconds())) 

    notificationThroughput.Inc() 

   } 

  } 

 }() 

 

 return nil 

} 

func (w *Watcher) Unwatch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 
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 delete(w.watches, key) 

 

 return nil 

} 

func levelizedBFS(w *Watcher, key string) { 

 visited := make(map[string]bool) 

 queue := []string{key} 

 

 for len(queue) > 0 { 

  currKey := queue[0] 

  queue = queue[1:] 

 

  if visited[currKey] { 

   continue 

  } 

 

  visited[currKey] = true 

 

  w.Watch(context.Background(), currKey) 

 

  resp, err := w.client.Get(context.Background(), currKey) 

  if err != nil { 

   log.Println(err) 

   continue 

  } 

  for _, kv := range resp.Kvs { 

   queue = append(queue, string(kv.Key)) 

  } 

  startTime := time.Now() 

  graphTraversalTime.Observe(float64(time.Since(startTime).Milliseconds())) 

 } 

} 

func main() { 

 client, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: dialTimeout, 

 }) 

 if err != nil { 

  log.Fatal(err) 

 } 

 

 w := NewWatcher(client) 

 

 levelizedBFS(w, "/") 

 go func() { 

https://www.ijirmps.org/


Volume 11 Issue 5                                        @ September - October 2023 IJIRMPS | ISSN: 2349-7300  

IJIRMPS2305231785          Website: www.ijirmps.org Email: editor@ijirmps.org 11 

 

  for { 

   memoryUsage.Set(float64(getMemoryUsage())) 

   cpuUsage.Set(float64(getCPUUsage())) 

  

 averageWatcherNotificationTime.Observe(float64(getAverageWatcherNotificationTime())) 

   watcherNotificationSuccessRate.Set(float64(getWatcherNotificationSuccessRate())) 

   time.Sleep(1 * time.Second) 

  } 

 }() 

 

 select {} 

} 

func getMemoryUsage() float64 { 

 return 0 

} 

func getCPUUsage() float64 { 

 return 0 

} 

func getAverageWatcherNotificationTime() float64 { 

 return 0 

} 

func getWatcherNotificationSuccessRate() float64 { 

 return 0 

} 

func getMemoryUsage() float64 { 

 vm, err := psutil.VirtualMemory() 

 if err != nil { 

  return 0 

 } 

 return float64(vm.UsedPercent) 

} 

func getCPUUsage() float64 { 

 cpu, err := psutil.CPUPercent(0, false) 

 if err != nil { 

  return 0 

 } 

 return float64(cpu) 

} 

The code is written in Go and uses etcd, a distributed key-value store.It defines a Watcher struct to manage 

watched keys.The Watch function adds a new key to the watches map and starts a goroutine to watch for 

changes.The levelizedBFS function implements a levelized breadth-first search algorithm to traverse the 

graph of nodes.The code collects various metrics, including notification latency and throughput.It uses the 

prometheus package to collect and expose metrics.The main function creates a new Watcher instance and 

starts the levelized BFS algorithm.It also starts a new goroutine to collect metrics.The code appears to be a 

part of a larger system that uses etcd to manage a graph of nodes.The system collects metrics to monitor its 

performance.We will test the different operations performances of ETCD watch mechanism using Levilized 
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Breadth First Search Algorithm. 

 

ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 8.5 1200 55 22 

24GB 9.3 1150 62 25 

32GB 10.2 1100 70 28 

40GB 11 1050 78 30 

48GB 11.8 1000 85 32 

64GB 13 900 100 35 

Table 1: Notification latency: Levelized BFS - 1 

As shown in the Table 1, We have collected Notification latency, Notification throughput, memory usage 

and cpu usage  for different sizes of the ETCD data store.  

 

Graph 1: Notification latency: Levelized BFS - 1 

Graph 1 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for different 

ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

Graph 2: Notification Throughput and Memory Usage 

Levelized BFS -1 

Graph 2 shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism.  Itshows the two scale Y 

axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and Notification 

throughput from 0 to 1400. 
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ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 8.5 1200 55 22 

24GB 9.3 1150 62 25 

32GB 10.2 1100 70 28 

40GB 11 1050 78 30 

48GB 11.8 1000 85 32 

64GB 13 900 100 35 

Table 2: Notification latency: Levelized BFS - 2 

Notification Latency is the time it takes for a notification to be processed and delivered to the intended 

recipient, The average time (in milliseconds or seconds) between when a notification is generated and when 

it is received by the recipient. Notification latency is critical in systems where timely notifications are 

essential, such as in real-time monitoring or alerting systems. Table 2, We have collected Notification 

latency , Notification throughput, memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB 

, 40GB , 48GB and 64GBof the ETCD data store.  

 

Graph 3: Notification latency: Levelized BFS - 2 

Graph 3 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for different 

ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

Graph 4: Notification Throughput and Memory Usage 

Levelized BFS -2 

Graph 4shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the two scale Y 
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axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and Notification 

throughput from 0 to 1400. 

ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 8.7 1180 57 23 

24GB 9.5 1125 64 26 

32GB 10.4 1075 72 29 

40GB 11.2 1025 80 31 

48GB 12 975 87 33 

64GB 13.5 875 102 36 

Table 3: Notification latency: Levelized BFS - 3 

Notification Throughput, The rate at which notifications are processed and delivered to recipients. The 

number of notifications processed per unit of time (e.g., notifications per second).Notification throughput is 

essential in systems where a high volume of notifications needs to be processed, such as in large-scale 

monitoring or logging systems.Table 3, We have collected Notification latency , Notification throughput, 

memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB of the 

ETCD data store.  

 

 

Graph 5 : Notification latency: Levelized BFS - 3 

Graph 5 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for different 

ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 
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Levelized BFS -3 

Graph 6shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism.  It shows the two scale Y 

axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and Notification 

throughput from 0 to 1400. 

 

TCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 9 1160 58 24 

24GB 9.8 1105 66 27 

32GB 10.6 1055 75 30 

40GB 11.4 1005 83 32 

48GB 12.2 950 90 34 

64GB 13.7 850 105 37 

Table 4: Notification latency: Levelized BFS - 4 

As shown in the Table 4, We have collected for different sizes of the ETCD data store sizes like 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.We have collected Notification latency , Notification throughput, 

memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB of the 

ETCD data store.  

 

Graph 7: Notification latency: Levelized BFS - 4 

Graph 7 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for different 

ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 
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Graph 8: Notification Throughput and Memory Usage 

Levelized BFS -4 

Graph 8shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism.  It shows the two scale Y 

axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and Notification 

throughput from 0 to 1300. 

 

ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 9.5 1140 60 25 

24GB 10.3 1085 68 28 

32GB 11 1035 77 31 

40GB 11.8 985 85 33 

48GB 12.6 930 92 35 

64GB 14 830 107 38 

Table 5: Notification latency: Levelized BFS - 5 

As shown in the Table 5, We have collected for different sizes of the ETCD data store sizes like 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.We have collected Notification latency , Notification throughput, 

memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB of the 

ETCD data store.  

 

Graph 9 : Notification latency: Levelized BFS - 5 

Graph 9 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for different 

ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 
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Graph 10: Notification Throughput and Memory Usage 

Levelized BFS -5 

Graph 10shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism.  It shows the two scale Y 

axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and Notification 

throughput from 0 to 1200. 

ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 9.8 1120 62 26 

24GB 10.6 1065 70 29 

32GB 11.3 1015 79 32 

40GB 12.1 965 87 34 

48GB 12.9 910 94 36 

64GB 14.3 810 109 39 

Table 6: Notification latency: Levelized BFS - 6 

As shown in the Table 6, We have collected for different sizes of the ETCD data store sizes like 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.We have collected Notification latency , Notification throughput, 

memory usage and cpu usage  for different sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB of the 

ETCD data store.  

 

Graph 11 : Notification latency: Levelized BFS - 6 

Graph 11 shows the Notification latency , cpu usage of watch mechanism using Levelized BFS for different 

ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 
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Levelized BFS -6 

Graph 12 shows the Notification throughput, memory usage for the ETCD data store having the Levelized 

Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the two scale Y 

axis plot since we are having two different ranges of data i.e, memory usage from 0 to 120 and Notification 

throughput from 0 to 1200. 

 

PROPOSALMETHOD 

ProblemStatement 

Etcd replicates the updated data across its nodes and it ensures data consistency across all the nodes.  We 

can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state at 

key value store.Implementation of the ETCD watch mechanism using BFS Graph algorithm is having 

performance issues . We will address these issues by implementing the watch mechanism using 

Approximate BFS graph algorithm. 

 

Proposal 

The time it takes for an algorithm to traverse a graph, visiting each node or vertex exactly once. In the 

context of BFS and ABFS algorithms, graph traversal time refers to the time it takes for the algorithm to 

explore the entire graph, starting from a given source node. Graph traversal time is an important metric in 

evaluating the performance of graph algorithms, as it directly affects the overall efficiency and scalability of 

the algorithm. ABFS has a lower computational complexity compared to BFS, especially for large graphs. 

ABFS uses a probabilistic approach to traverse the graph, which reduces the number of nodes that need to 

be visited.ABFS is more scalable than BFS, especially for large graphs with millions of nodes. ABFS can 

handle large graphs more efficiently, making it a better choice for big data applications.ABFS converges 

faster than BFS, especially for graphs with a large number of nodes. ABFS uses a probabilistic approach to 

traverse the graph, which allows it to converge faster. ABFS uses less memory than BFS, especially for 

large graphs. ABFS only needs to store the nodes that are currently being visited, which reduces memory 

usage.ABFS is more robust than BFS, especially in the presence of node failures or network partitions. 

ABFS can continue to operate even if some nodes fail or become unreachable.ABFS can handle dynamic 

graphs more efficiently than BFS. ABFS can adapt to changes in the graph structure, making it a better 

choice for applications with dynamic graphs.ABFS reduces the number of messages that need to be sent 

between nodes, making it a better choice for applications with limited bandwidth. 

 

IMPLEMENTATION 

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters have 

been configured with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 GB for all 

worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB data store 

capacities (ETCD store capacities). We will test the different operations performances of ETCD watch 

mechanism using Approximate Breadth First Search Algorithm and compare the results  with the previous 

results which we had so far in the literature survey. 

 

package main 

 

import ( 

 "context" 
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 "fmt" 

 "log" 

 "sync" 

 "time" 

 

) 

 

const ( 

 dialTimeout = 5 * time.Second 

) 

 

type Watcher struct { 

 client  *clientv3.Client 

 watches map[string]struct{} 

 mu       sync.RWMutex 

} 

 

func NewWatcher(client *clientv3.Client) *Watcher { 

 return &Watcher{ 

  client:  client, 

  watches: make(map[string]struct{}), 

 } 

} 

 

func (w *Watcher) Watch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 if _, ok := w.watches[key]; ok { 

  return nil 

 } 

 

 w.watches[key] = struct{}{} 

 

 go func() { 

  ch := w.client.Watch(ctx, key) 

  for resp := range ch { 

   for _, ev := range resp.Events { 

    fmt.Printf("Watch event: %s %q : %q\n", ev.Type, ev.Kv.Key, ev.Kv.Value) 

   } 

  } 

 }() 

 

 return nil 

} 
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func (w *Watcher) Unwatch(ctx context.Context, key string) error { 

 w.mu.Lock() 

 defer w.mu.Unlock() 

 

 delete(w.watches, key) 

 

 return nil 

} 

 

func abfs(w *Watcher, key string) { 

 visited := make(map[string]bool) 

 queue := []string{key} 

 

 for len(queue) > 0 { 

  currKey := queue[0] 

  queue = queue[1:] 

 

  if visited[currKey] { 

   continue 

  } 

 

  visited[currKey] = true 

 

  w.Watch(context.Background(), currKey) 

 

  resp, err := w.client.Get(context.Background(), currKey) 

  if err != nil { 

   log.Println(err) 

   continue 

  } 

 

  for _, kv := range resp.Kvs { 

   queue = append(queue, string(kv.Key)) 

  } 

 } 

} 

 

func main() { 

 client, err := clientv3.New(clientv3.Config{ 

  Endpoints:   []string{"localhost:2379"}, 

  DialTimeout: dialTimeout, 

 }) 

 if err != nil { 

  log.Fatal(err) 

 } 
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 w := NewWatcher(client) 

 

 abfs(w, "/") 

} 

 

 

This code implements the ABFS (Approximate Breadth-First Search) algorithm for the ETCD watch 

mechanism. The ABFS algorithm is used to traverse the graph of nodes in an approximate manner. The code 

defines a Watcher struct to manage watched keys and uses the etcd client to watch for changes to keys. The 

abfs function implements the ABFS algorithm and traverses the graph of nodes. The code uses a queue to 

keep track of nodes to visit. The code also uses a mutex to protect access to the watches map. 

 

package main 

 

import ( 

 "context" 

 "fmt" 

 "log" 

 "sync" 

 "time" 

 

  

  

) 

 

const ( 

 dialTimeout = 5 * time.Second 

) 

 

var ( 

 notificationLatency = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "notification_latency", 

  Help:    "Notification latency in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

 notificationThroughput = promauto.NewCounter(prometheus.CounterOpts{ 

  Name: "notification_throughput", 

  Help: "Number of notifications per second", 

 }) 

 memoryUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "memory_usage", 

  Help: "Memory usage in megabytes", 

 }) 

 cpuUsage = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "cpu_usage", 

  Help: "CPU usage as a percentage", 
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 }) 

 averageWatcherNotificationTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "average_watcher_notification_time", 

  Help:    "Average time taken to notify watchers in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

 watcherNotificationSuccessRate = promauto.NewGauge(prometheus.GaugeOpts{ 

  Name: "watcher_notification_success_rate", 

  Help: "Success rate of watcher notifications as a percentage", 

 }) 

 graphTraversalTime = promauto.NewHistogram(prometheus.HistogramOpts{ 

  Name:    "graph_traversal_time", 

  Help:    "Time taken to traverse the graph in milliseconds", 

  Buckets: []float64{1, 5, 10, 50, 100, 500}, 

 }) 

) 

 

func collectMetrics() { 

 go func() { 

  for { 

   memoryUsage.Set(float64(getMemoryUsage())) 

   cpuUsage.Set(float64(getCPUUsage())) 

  

 averageWatcherNotificationTime.Observe(float64(getAverageWatcherNotificationTime())) 

   watcherNotificationSuccessRate.Set(float64(getWatcherNotificationSuccessRate())) 

   time.Sleep(1 * time.Second) 

  } 

 }() 

} 

 

func getMemoryUsage() float64 { 

 // implement memory usage collection 

 return 0 

} 

 

func getCPUUsage() float64 { 

 // implement CPU usage collection 

 return 0 

} 

 

func getAverageWatcherNotificationTime() float64 { 

 // implement average watcher notification time collection 

 return 0 

} 

 

func getWatcherNotificationSuccessRate() float64 { 
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 // implement watcher notification success rate collection 

 return 0 

} 

 

 

This code collects various metrics to monitor the performance of the ETCD watch mechanism using the 

ABFS algorithm. The metrics collected include memory usage, CPU usage, average watcher notification 

time, and watcher notification success rate. The code uses the prometheus package to collect and expose 

these metrics. The metrics are collected at regular intervals using a goroutine. The metrics can be used to 

monitor the performance of the ETCD watch mechanism and identify any issues or bottlenecks. The code 

also provides functions to implement the collection of each metric. 

 

ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 5.2 1500 42 18 

24GB 5.8 1450 48 20 

32GB 6.3 1400 55 23 

40GB 6.9 1350 61 25 

48GB 7.5 1300 68 27 

64GB 8.2 1200 80 30 

Table 7: Notification latency: ABFS – 1 

Table 7 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 24GB 

, 32GB , 40GB , 48GB and 64GB.  

 

 

Graph 13: Notification latency: ABFS – 1 

Graph 13 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

0

5

10

15

20

25

30

16GB 24GB 32GB 40GB 48GB 64GB

5.2 5.8 6.3 6.9 7.5
8.2

18

20

23

25

27

30

Notification Latency (ms) CPU Usage (%)

https://www.ijirmps.org/


Volume 11 Issue 5                                        @ September - October 2023 IJIRMPS | ISSN: 2349-7300  

IJIRMPS2305231785          Website: www.ijirmps.org Email: editor@ijirmps.org 24 

 

 

 

Graph 14: Notification Throughput and Memory Usage 

ABFS -1 

Graph 14 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the 

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 90 and 

Notification throughput from 0 to 1600. 

 

ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 5.2 1500 42 18 

24GB 5.8 1450 48 20 

32GB 6.3 1400 55 23 

40GB 6.9 1350 61 25 

48GB 7.5 1300 68 27 

64GB 8.2 1200 80 30 

Table 8: Notification latency: ABFS – 2 

Memory usage is the amount of memory (RAM) used by a system or application. The average or peak 

memory usage (in bytes, kilobytes, or megabytes) over a given period. Memory usage is critical in systems 

where memory is limited, as excessive memory usage can lead to performance degradation, crashes, or out-

of-memory errors. 

Table 8 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 24GB 

, 32GB , 40GB , 48GB and 64GB.  
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Graph 15: Notification latency: ABFS – 2 

Graph 15 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

 

Graph 16: Notification Throughput and Memory Usage 

ABFS -2 

Graph 16 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the 

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 90 and 

Notification throughput from 0 to 1600. 

ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 5.4 1460 45 19 

24GB 6 1410 51 22 

32GB 6.6 1360 58 24 

40GB 7.2 1310 64 26 

48GB 7.8 1260 70 28 

64GB 8.5 1180 82 31 

Table 9: Notification latency: ABFS – 3 
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CPU Usage is the percentage of CPU (Central Processing Unit) resources used by a system or application. 

The average or peak CPU usage (as a percentage) over a given period. CPU usage is essential in systems 

where CPU resources are limited, as excessive CPU usage can lead to performance degradation, slow 

response times, or system crashes. 

Table 9 shows Notification latency, Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 

Graph 17: Notification latency: ABFS – 3 

Graph 17 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

.Graph 18: Notification Throughput and Memory Usage 

ABFS -3 

Graph 18 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the 

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 90 and 

Notification throughput from 0 to 1600. 
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24GB 6.2 1390 53 23 

32GB 6.8 1340 60 25 

40GB 7.4 1290 66 27 

48GB 8 1240 72 29 

64GB 8.7 1160 84 32 

Table 10: Notification latency: ABFS -4 

Table 10 shows Notification latency , Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 

Graph 19: Notification latency: ABFS – 4 

Graph 19 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

Graph 20: Notification Throughput and Memory Usage 

ABFS -4 

Graph 20 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the 

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 90 and 

Notification throughput from 0 to 1600. 
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16GB 5.8 1420 49 21 

24GB 6.4 1370 55 24 

32GB 7 1320 62 26 

40GB 7.6 1270 68 28 

48GB 8.2 1220 74 30 

64GB 8.9 1140 86 33 

Table 11: Notification latency: ABFS – 5 

Table 11 shows Notification latency, Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 

Graph 21: Notification latency: ABFS – 5 

Graph 21 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

Graph 22: Notification Throughput and Memory Usage 

ABFS -5 

Graph 22 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the 

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 90 and 

Notification throughput from 0 to 1600. 
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ETCD 

Size 

Notification 

Latency 

(ms) 

Notification 

Throughput 

(notifications/s) 

Memory 

Usage 

(MB) 

CPU 

Usage 

(%) 

16GB 6 1400 51 22 

24GB 6.8 1350 57 25 

32GB 7.4 1300 64 27 

40GB 8 1250 70 29 

48GB 8.6 1200 76 31 

64GB 9.3 1120 88 34 

Table 12: Notification latency: ABFS -6 

Table 12 shows Notification latency, Notification throughput, memory usage and cpu usage  of watch  

mechanism for  ETCD by Approximate Breadth First Search Algorithm. We have collected for 16GB, 

24GB , 32GB , 40GB , 48GB and 64GB.  

 

Graph 23: Notification latency: ABFS -6 

Graph 23 shows the Notification latency , cpu usage of watch mechanism using Approximate BFS for 

different ETCD sizes like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB. 

 

Graph 24: Notification Throughput and Memory Usage 

ABFS -6 

Graph 24 shows the Notification throughput, memory usage for the ETCD data store having the 

Approximate Breadth First Search algorithm usage in the implementation of watch mechanism. It shows the 

two scale Y axis plot since we are having two different ranges of data i.e, memory usage from 0 to 100 and 

Notification throughput from 0 to 1600. 

0

5

10

15

20

25

30

35

16GB 24GB 32GB 40GB 48GB 64GB

6 6.8 7.4 8 8.6 9.3

22

25
27

29
31

34

Notification Latency (ms) CPU Usage (%)

5
1 5

7 6
4 7

0 7
6

8
8

1
4
0
0

1
3
5
0

1
3
0
0

1
2
5
0

1
2
0
0

1
1
2
0

0

200

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

70

80

90

100

16GB 24GB 32GB 40GB 48GB 64GB

Memory Usage (MB) Notification Throughput (notifications/s)

https://www.ijirmps.org/


Volume 11 Issue 5                                        @ September - October 2023 IJIRMPS | ISSN: 2349-7300  

IJIRMPS2305231785          Website: www.ijirmps.org Email: editor@ijirmps.org 30 

 

 

Graph 25: Notification Latency and CPU Usage Comparison-1.1 

 

 

Graph 26: Notification Throughput and Memory usage comparison-1.2 

 

 

Graph 27: Notification Latency and CPU Usage Comparison-2.1 
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Graph 28: Throughput and Memory usage comparison-2.2 

 

 

Graph 29: Notification Latency and CPU Usage Comparison-3.1 

 

 

Graph 30: Notification Throughput and Memory usage comparison-3.2 
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Graph 31: Notification Latency and CPU Usage Comparison -4.1 

 

 

Graph 32: Notification Throughput and Memory usage comparison-4.2 

 

 

Graph 33: Notification Latency and CPU Usage Comparison-5.1 
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Graph 34: Notification Throughput and Memory usage comparison-5.2 

 

 

Graph 35: Notification Latency and CPU Usage Comparison-6.1 

 

 

Graph 36: Notification Throughput and Memory usage comparison-6.2 
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Search Algorithm instead of Levelized BFS algorithm. 

 

EVALUATION 

The comparison of Levilized BFSimplementation of watch mechanism results with Approximate Breadth 

First Search Algorithm implementation of watch mechanism results and the  later one exihibits high 

performance. We have collected the stats for different sizes of the Data Store size. The Data Sore capacities 

are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB.According to the analysis of metrics we can conclude 

that notification latency , cpu usage , memory usage are going down , and notification throuhput is going up 

which is positive trend for the performance of the ETCD watch mechanism. These results we are observing 

when we have used Approximate Breadth First Search Algorithm instead of Levelized BFS algorithm. 

 

CONCLUSION 

We have configured  three node , four node , five node , six node , seven node , eight node , nine node and 

ten node clusters with 32 CPU, 64 GB and 500GB for master node and  24 CPU , 32 GB and 350 GB for all 

worker nodes and tested the performance of ETCD operations using the metrics  collection code. According 

to the analysis of metrics we can conclude that notification latency , cpu usage , memory usage are going 

down , and notification throuhput is going up which is positive trend for the performance of the ETCD 

watch mechanism. These results we are observing when we have used Approximate Breadth First Search 

Algorithm instead of Levelized BFS algorithm. 

Future work: The circuit complexity of ABFS is slightly higher than Levelized BFS due to the additional 

overhead of the heuristic approach used in ABFS. Future work needs to address this issue.  
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