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Abstract:  

The project scope of the project involves the analysis of offline EEG data to develop a machine learning 

model for the detection of anxiety and depression. The project will encompass data preprocessing, 

feature extraction, model development, ethical considerations, and reporting of findings. The project 

aims to develop a machine learning-based system that analyzes brainwave signals, specifically (EEG) 

data, to identify patterns and biomarkers associated with anxiety and depression. The system's primary 

objective is to provide an objective and quantifiable assessment of mental health status, leading to early 

detection and intervention. 
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INTRODUCTION 

The project on "Anxiety and Depression Detection by Processing Brainwave Signals using Machine 

Learning" represents an innovative and critical intersection of neuroscience, psychology, and advanced 

technology. Anxiety and depression are prevalent mental health disorders that impact millions of lives 

globally. Early detection and intervention are crucial for effective treatment and improved quality of life for 

individuals affected by these conditions. 

Traditionally, the diagnosis of anxiety and depression has relied on self-reporting, clinical assessments, and 

interviews with mental health professionals. While these methods remain invaluable, there is a growing 

interest in leveraging technological advancements to enhance the accuracy and efficiency of detection. 

This project seeks to harness the power of brainwave signal analysis, specifically electroencephalography 

(EEG), combined with machine learning techniques to develop a robust and non-invasive method for 

identifying symptoms of anxiety and depression. EEG provides a window into the brain's electrical activity, 

offering a unique opportunity to uncover neural patterns associated with these mental health disorders 

 

MOTIVATION 

• Positive Impact on Health and Well-being  

• Real-world Applications 
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• Innovation and Cutting-edge Technology 

• Interdisciplinary Collaboration 

• Personal Growth and Learning: 

 

OBJECTIVE 

• Design and implement a machine learning or deep learning model capable of accurately detecting 

stress using multimodal physiological data. 

• Explore and integrate diverse physiological data sources, such as heart rate, electrodermal activity, 

and facial expressions, to create a comprehensive and informative dataset. 

• Ensure that the stress detection model generalizes well to different individuals, diverse contexts, and 

various stress-inducing situations. 

EXISTING SYSTEM 

stress detection in literature often involves diverse approaches, such as physiological measurements, machine 

learning, and wearable technology. Studies frequently utilize heart rate variability, skin conductance, and 

cortisol levels as indicators. Recent advancements explore the integration of sensor data with deep learning 

for more accurate stress prediction. Key challenges include standardizing stress measurement across studies 

and addressing individual variability in stress responses. It's a dynamic field with ongoing research to enhance 

the reliability and applicability of stress detection methods. 

Various automated/semi-automated medical diagnosis systems based on human physiology have been gaining 

enormous popularity and importance in recent years. Physiological features exhibit several unique 

characteristics that contribute to reliability, accuracy and robustness of systems. 

 

PROBLEM DEFINATIONS: The stress detection problem involves developing methods or systems to 

identify and quantify stress levels in individuals based on various physiological, behavioral, or contextual 

cues. This may include analyzing data such as heart rate, skin conductance, facial expressions, speech patterns, 

or activity levels to infer and assess stress. The goal is to create reliable and accurate tools for recognizing 

stress in real-time, facilitating early intervention or support. It involves developing algorithms that can analyze 

various data sources, such as physiological signals or speech patterns, to identify signs of stress in individuals. 

By training machine learning models on labeled data, we can teach them to recognize patterns associated with 

stress and classify new instances accordingly. It's an exciting area with potential applications in healthcare, 

wellness, and even personal productivity. 

 

FLOW CHART 

 
FUCTIONAL REQUIREMENTS 

• User Authentication: Implement a secure user authentication system to ensure privacy. 
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•  Data Input: Specify the sources of stress data input, such as physiological sensors or user input. 

•  Real-time Monitoring: Enable real-time monitoring of stress levels. 

• Stress Detection Algorithm: Define the algorithm for stress detection based on input data. 

• Alert System: Implement a system to alert users when high stress levels are detected 

 

NON FUCTIONAL REQUIREMENTS 

• Reliability: Ensure the system's reliability for consistent stress monitoring. 

•  Security: Implement measures to protect user data and maintain confidentiality. 

•  Compatibility: Specify compatibility with various devices and operating systems. 

•  User Interface: 

• Intuitive Design: Design a user-friendly interface for easy interaction. 

•  Visualizations: Include clear visualizations of stress levels over time. 

•  Customization: Allow users to customize settings based on personal preferences. 

•  Documentation: 

•  User Manual: Provide a comprehensive user manual for effective utilization. 

•  Developer Documentation: Document the codebase and algorithms for future development 

 

PROJECT SCOPE 

stress detection project involves developing a system to identify and measure stress levels in individuals. The 

scope may include Sensor Integration: Incorporating various sensors (heart rate monitors, EEG devices, etc.) 

to collect physiological data. Data Processing: Analyzing the sensor data to extract relevant features that 

indicate stress levels. Machine Learning Models: Implementing machine learning algorithms to train models 

for stress detection based on the processed data. User Interface: Creating a user-friendly interface for real-

time monitoring and displaying stress levels. Alert System: Implementing a system to alert users or relevant 

parties when stress levels reach a certain threshold. Feedback Mechanism: Providing users with insights and 

recommendations to manage stress based on detected patterns. Privacy and Security: Ensuring the 

confidentiality and security of the collected health data. Testing and Validation: Conducting thorough testing 

to validate the accuracy and effectiveness of the stress detection system. Integration with Wearable Tech: 

Exploring integration with wearable devices for seamless and continuous stress monitoring 

 

CONCLUSION 

Hence we are overcoming the drawbacks of existing system , we are providing better solution as compare to 

existing system in affordable cost, The proposed research work has understood the structure and format of the 

publicly available WESAD dataset, cleaned and transformed data to a set eligible to construct machine 

learning and deep learning classification methods, explored and constructed various classification models and 

compared them. WESAD dataset contains data from multiple physiological modalities like three-axis 

acceleration (ACC), respiration (RESP), electrodermal activity (EDA), electrocardiogram (ECG), body 

temperature (TEMP), electromyogram (EMG) and blood volume pulse (BVP) which is not available in other 

datasets, which makes this work suitable for the detection of stress in human being. This model has achieved 

the accuracy of 84.32% and 95.21% on a three-class and a binary classification problems. As there were lesser 

subjects, caution must be taken while interpreting these results. However, our results show that generalization 

is possible as the LOSO evaluation scheme is used. Further work can be done by taking self-reports of the 

subjects from the dataset into account, which were obtained using several organized questionnaires. The 

modalities such as facial cues, logging information, audio/video recordings, FITBIT data, etc. that are used in 

various studies separately can be merged with physiological data, and a new dataset can be introduced. Such 
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a dataset can be more precisely used for stress detection as it will contain nearly all the features necessary for 

stress induction in human beings. 
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