
Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 1

Regression Automation: Methods to Reduce

Testing Time and Improve Product Quality

Mohnish Neelapu

Domain: QA Automation

Abstract:

In software development, regression testing is a crucial part to ensure that newly introduced changes

do not negatively affect workings of already existing features. However, manual regression test is cost

intensive, time consuming, tedious and prone to human errors and actually become bottlenecks in the

software development cycle. Automated regression testing is used as a way to improving the

efficiency, accuracy, and detection of defects with overall testing time reduced. Then it analyzes

various automation techniques such as test prioritization, self healing mechanisms and continuous

integration and deployment (CI/CD) integration that help reduce the need for software tests and

increase product quality. Automation study is performed and the impact of automation on critical

performance metric such as defect detection rate, test execution time, regression failure rate and code

coverage is studied. This research presents a comparative analysis of how the test cycle can be

accelerated by automation, defects are detected with a higher accuracy, and the code coverage can be

enlarged through automation. Execution time is significantly reduced and failure rates are

significantly reduced with experimental findings, as are defect detection efficiency. Automated

regression testing strategies adopted by organizations can help not only optimize the test workflows

that become more expeditious and prevent product meltdown by further accelerating the software

release cycle, but also reduce the maintenance overhead of software testing which further increase the

quality and reliability of software. The data which emerge from this research only confirm the

essence of automation in present day software development, giving teams a hand on how to lessen the

testing time, keep it maintainable, and improve software reliability in agile and rapidly paced

environments.

Keywords: Regression Testing Automation, Software Quality Assurance, Test Execution

Optimization, Defect Detection Efficiency, Continuous Integration and Deployment (CI/CD).

I. INTRODUCTION

Regression testing is an important part of the software development process as it guarantees that added

changes in the post do not affect the existing functions [18]. However, with updates, bug fixes and feature

enhancements all becoming part of software evolution, the problem of acquiring and keeping software

stable and reliable becomes more and more difficult [17]. While effective, the traditional manual regression

testing is extremely time consuming, laborious and should be performed by a human [7]. For complex

applications, the number of test cases needed can be simply overwhelming for testers and often it is simply

infeasible to expect that these test cases are covered within project deadline. Moreover, manual execution

lacks consistency, and thus there are variations in the test results across different test cycles. Such

inefficiencies in the software development cycle enhance the cost, extend the time and increase the risk of

undetected defects from entering production [8]. Thereby, businesses have issues in providing high quality

software at a fast speed. With growing complexity of modern software systems, organizations now are being

pushed to look for alternative test approaches that optimize efficiency, reduce human involvement as well as

improve overall product quality [9] [19].

In order to tackle these problems, automated regression testing is a triumphant solution that turns testing

into an automated process [20]. Testing speed, accuracy and repeatability is increased by automating them

with no man dependency. Performed by automated test scripts, thousands of test cases can be executed a lot

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 2

faster than a manual tester would be able to and thus faster detection and resolution of defects [10].

Automation frameworks also include support for risk based test selection through which the organizations

can select the test cases based on the critical application components and new code changes. Parallel

execution further accelerates test execution time, improving the test execution time and facilitating rapid

feedback loops for the developers. Also, integration with CI/CD pipelines eases the software releases by

automating the regression tests after each code commit [11]. In such modern Agile and DevOps

environments where software updates are constant; automation becomes a necessity because of these

advantages. With automation in place, organizations can increase the efficiency and optimize the utilization

of resources as well as achieve faster time to the market and stable software [12][13].

While efficient regression automation strategies are evident, they come with many challenges which the

organization needs to tackle. There is an initial cost into the infrastructure, tools, and enough skilled

personnel that it can be significant [16]. It also requires maintenance of automated tests both in terms of

effort and of maintaining the tests so that failures due to outdated selectors or deprecated functions do not

occur with every application change [14]. Test automation frameworks must also be evaluated by ensuring

their suitability regarding the application architecture and the development workflow. Automated regression

testing solutions provide self-healing mechanisms as well as intelligent test selection, but their adoption

depends on organizational readiness and technical feasibility [15]. This research studies methodologies that

help automate regression testing to improve software quality and testing efficiency. The paper describes the

advantages, challenges, and practical implications of automated regression testing in modern software

development environments, outlining best practices for enhancing test execution and defect detection.

II. LITERATURE REVIEW

In recent years, a number of researchers explored different regression automation techniques in order to

improve the efficiency of software testing. In CI environments, Elsner et al. [1] developed Build System

Aware Multi language Regression Test Selection method. Using this approach, dependencies across several

programming languages are considered to optimize test selection with higher execution time, and reduced

computational overhead. However, integrating into different CI workflows is difficult because of the

complexity of analyzing diverse build systems. In [2], Nițescu et al. proposed an automation framework for

integrating CI into software development that concentrates on automated test execution in fast paced

DevOps environment. By adopting their method, automated tests become seamlessly integrated into CI

pipelines and thus help improving software reliability. In dynamic application environments with frequent

updates, the main challenge is in maintaining automation scripts, particularly as in a dynamic application

environment, changes occur very often. A Component-Based Requirements Prediction and Regression

Testing Aspects Framework as proposed by Ali et al. [3] are presented, to enhance the efficiency of test case

selection by predicting the change impact on software. On this approach, it minimizes the need of redundant

test executions and enhances the fault detection rate. But depending on the component dependency

mapping, the model may be mistaken which introduce inconsistencies in case of lack of correct

documentation. In Krushna and Gopinath [4] developed an Agile Test Automation framework for web

applications based on TestNG, Random Integration Algorithm of Machine Learning, has been developed.

Using this approach leads to improved accuracy of the tests and prediction of response time, resulting in

accurate identifying of defects in the agile environment. However, the model considerably improves test

reliability while simultaneously posing a significant roadblock in dealing with the flexibility of assembling

web applications, due to which the model needs to be retrained very often. Othman and Zein [5] developed

Model Based Testing (MBT) for web applications where test cases are auto generated from system models.

The advantage of this technique is significant reduction in human effort needed for test creation as well as

complete test coverage. However, its effectiveness is limited in accuracy by the accuracy of the system

models, which can be time consuming to develop for complex applications.

A. Challenges in Regression Automation

Despite improvements in the automation of regression, there are several challenges that are still not

addressed:

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 3

➢ Currently, the test selection methods need to be scaled to large applications with constantly changing

codebases, which causes inefficiency in the regression testing.

➢ Frequent updates are necessary for automation frameworks to adjust to changing application structures,

which raises maintenance costs and resource usage.

➢ Predictive test selection and self-healing mechanisms are still difficult to implement because research

on their viability and efficacy is still ongoing.

➢ Even though CI/CD pipelines improve automation, a lot of research concentrates on execution

efficiency without taking into account how well they integrate with DevOps workflows.

➢ It is still difficult to strike the ideal balance between test coverage and execution time because reducing

execution time frequently results in lower fault detection rates.

III. PROPOSED METHODOLOGY FOR REGRESSION AUTOMATION

In the proposed methodology for regression automation, an experimentation approach is used to explore a

number of automation techniques in real world testing situations. Automation tools and frameworks are

compared to try and ascertain their leadership and capacity in decreasing test execution time with the

increase of product quality. Secondly, the methodology is validated with industry case studies, to prove the

practical applicability of the methodology in the entire software development environment. It based data

collection on performance benchmarks, the best practices into the industry, and real world test suites to get a

full evaluation. Qualification of the automation tools under review include Selenium, Cypress, TestNG, and

JUnit all tools with the scope for script execution, test case management and defect detection having wide

software application in the industry. In the experimental setup set up a dedicated testing environment where

a lot of different versions of the software, automation frameworks, and CI/CD integrations are running in

parallel and picking a subset of tests to run and execute dynamically for better efficiency. Finally, our

evaluation criteria are test execution time, defect detection rate and, resource efficiency and serves as

measurable insights into effectiveness of the strategy. The experiments on real world applications are

conducted to ensure practical relevance and to show the impact of regression automation in a number of

testing scenarios.

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 4

Fig. 1. Proposed Workflow for Regression Automation.

A. Methods for Reducing Testing Time

Automatic regression runs need efficient strategies to ensure software reliability and minimize the

accumulation of regression run time. In this section, we share key methodologies for speeding up test

execution speed, augmenting defect detection efficiency and getting the integration of automation worked

into a smooth development cycle. The proposed approaches are about prioritization, parallel execution, self

healing test mechanism, and integration with CI/CD pipeline.

1) Test Prioritization Strategies

Risk based selection and historical defect analysis are modern techniques to handle the automation driven

approach of test prioritization. Based on this, risk based prioritization will select test cases according to the

factors of code changes, defect history and business impact first. In addition, automation frameworks allow

test execution to be organized dynamically by previously failed test patterns and execution times. Thus risk

based prioritization along with the use of automated structured approach to prioritization can help team’s

utilized time to execute without compromising defect detection accuracy.

2) Parallel Execution and Distributed Testing

Parallel execution and distributed testing are one of the most effective ways in which the regression testing

time can be reduced. With parallel testing, we distribute the workload to multiple environments, devices or

cloud instances and the workload is executed in parallel. Concurrent test execution is made possible with

Selenium Grid, containerized test environments (Docker) and cloud platform based testing platform (AWS

Device Farm, BrowserStack). More efficiency is added by the distributed testing which utilizes multiple

Start

Select Automation Tools

Prepare Test Suites & Data

Configure Testing Environment

Execute Automated Tests

Analyze Results (Execution Time,

Defect Rate, Resource Use)

Are the

results

satisfactory?

End

Optimize &

Maintain Test

Cases

Yes
No

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 5

machines or cluster to execute multiple test cases simultaneously. It significantly shortens the test execution

cycle, especially in big scale applications that need fast updates.

3) Automated Test Maintenance and Self-Healing Mechanisms

Programs with changing UI components and backend logic need automatic test maintenance in dynamic

software environment. The increase in maintenance effort in maintaining script reliability means traditional

regression suites require frequent updates. In order to tackle this concern, automation frameworks use self

healing features by automating test scripts when application components are changed. These mechanisms

use defined fallback locators, structured element identify techniques, and reliable error handling to detect

any modifications like XPath or CSS selector updates. With the help of structured self healing mechanisms,

teams ensure that long term efficiency and sustainability of the automation process is maintained through

manual intervention as much as possible.

Pseudocode 1: Self-Healing Mechanism for Automated Regression Testing

function self_healing_test(test_case):

try

 execute(test_case)

except ElementNotFound:

 new_locator = find_updated_locator(test_case)

if new_locator:

 update_locator(test_case, new_locator)

execute(test_case)

else:

 log_failure(test_case)

This is pseudocode that exhibits a dynamic method to where alternative locators are generated and validated

by it. The test case is re-executed with updates if a new, valid locator is found so as to minimize impact to

test automation workflows.

4) Optimizing CI/CD Pipeline Integration

To enable speeding up the software delivery cycles while maintaining high quality, it is to be integrated

seamlessly with the CI/CD pipeline. An important part of continuous integration is to have automated

testing trigger as early as possible to detect defects in the early stages of the development process, so you

can count on stability when it is being deployed. Automated tests can be executed on every code commit, as

a way to identify regressions as early as possible in introducing the new code, and to optimise test

scheduling to the optimal mix of execution time and coverage, all of this can be achieved. With embedded

automated regression testing into DevOps workflows, development becomes faster, reliability of the

software improved, and rapid product releases not affecting quality are achieved.

B. Improving Product Quality through Automation

Automated regression testing is critical in improving the software quality by checking if any defects are

included in the new updates. Regression automation helps provide the product stability, consistency, and

reliability while expunging manual intervention, and speeding up the test execution. This section explains

key steps of how to bring the power of automation over product quality, including test coverage and how to

keep the product quality running continuously with awareness of certain quality metrics.

1) Enhancing Test Coverage in Regression Automation

The need for test coverage is critical in order to ensure software reliability because an insufficient amount

will not catch any potential defects. Regression automation allows for the test coverage to be increased by

systematically running many test cases on a wide range of environments and configurations. Due to this,

automated regression frameworks use dynamic techniques of test selection and prioritization to augment test

coverage for the most critical functionalities. It ensures that kernel risk areas of software undergo rigorous

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 6

testings, therefore minimising the possibility of regression failures in production. Furthermore, the

automatic testing also gives cross platform validation, meaning that it has the same performance whether

your device is Android, iOS, Chrome, Browser, or whatever your platform or operating system may be

currently. Structured test coverage strategies can be implemented by the organizations to increase the

likelihood of detecting defects which lowers the risks of software updates.

2) Feedback Mechanisms and Continuous Monitoring

Software performance is checked for in automated regression testing, and it offers real time feedback to the

development teams to detect defects early on in software lifecycle. This should be a continuous observation

of test execution to track failure pattern, trend of stability and deviation of performance throughout the time.

Good feedback mechanisms involve generating a detailed test report where pass or fails rates, error log and

execution trends helps a team intelligently review test outcomes. Also, defect tracking tools integration

makes these failures logged automatically and categorized, simplifying debugger and troubleshooting.

Additionally, stakeholder feedback loops promote working together between developers, testers and project

managers to create test strategies in a real-time environment. Regression automation helps to increase the

quality of software, minimize defects leak into production and maximally reliability of applications by

integrating real time monitoring and structured feedback mechanisms. Fig. 2 illustrates the feedback

Mechanisms and Continuous Monitoring in Regression Automation

Fig. 2. Feedback Mechanisms and Continuous Monitoring in Regression Automation.

3) Quality Metrics for Automated Regression Testing

To perform automated regression, organizations define well defined quality metrics which quantitative

provide insights about the efficacy of automated regression in regard to the test and defect detection

efficiency. The Defect Detection Rate (DDR), being one the key metrics, is the percentage of defects

identified through automated regression tests and prevents critical defects from happening at the end of the

development cycle. Another important indicator is Test Execution Time, because it measures the testing

process efficiency by how long it takes to execute automated test cases in order to optimize it. Furthermore,

the Regression Failure Rate shows how often new updates lead to test failures, providing assurance on the

software stability and the effect of code change. Another crucial one is Code Coverage, which is an

important metric that indicates whether application code is successfully tested to ensure complete test for

Automated regression
testing

Real-time feedback

Stakeholder feedback

Developers, testers

Project mangers

Defect tracking

Log failures

Categorizes issues

Test Reports

Pass/fail rates

Error Logs, Trends

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 7

key functionalities with the help of regression tests. By studying these metrics, regression automation

strategies of the organizations can be fine tuned to increase defect detection efficiency, minimize test

execution speed and maximize software quality.

IV. RESULT AND ANALYSIS

The Results Section reports on regression automation experiment results aimed at testing efficiency and

product quality improvements. Quantitative performance comparisons and graphic and tabular data to show

important insights should be included in this section.

A. Performance Comparison of Regression Automation

Experiments were conducted to measure the impact of automation on testing time and defect detection for

different automation framework (Selenium, Cypress, TestNG, etc.). Results show in table I that the

utilization of automated regression testing leads to a great decrease in execution time without incurring a

decrease in defect detection accuracy.

TABLE I- REGRESSION AUTOMATION PERFORMANCE METRICS

Metric Before Automation After Automation Improvement (%)

Test Execution Time

(mins)

120 45 62.5%

Defect Detection Rate

(%)

78 92 17.9%

Regression Failure

Rate (%)

15 7 -53.3%

Code Coverage (%) 65 85 30.8%

B. Reduction in Test Execution Time

Execution time of a test cycle in a regression testing is the total time it takes to execute a test cycle for a set

of test cases. One of the metrics that needs to be considered in evaluating an automated testing framework’s

efficiency is this. Test execution time is an important metric which should be reduced to accelerate the

software delivery cycles without compromising on the product quality. It has been seen from the figure 3

tested execution time reduces significantly under the support of automation. Automated testing was quicker

to run through parallel processing and a scripted basis, as compared to manual testing which took longer.

Particularly, this improvement increases efficiency, speeds up the delivery of software, and makes sure that

the software is fully regression tested while maintaining the quality.

Fig. 3. Test Execution Time Comparison Before and After Automation.

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 8

C. Defect Detection Efficiency

Regression testing automates software issues and the early identification of defects improves the defect

detection. Better software stability and reliability can be achieved with this improvement. It is the defect

detection rate, which can be defined as the percentage of defects found by automated testing as compared to

manual efforts. We can see a consistently increasing in defect detection efficiency by analysis of several test

cycles, this shows how automating can

reduce unexamined errors. This fig. 4 shows the increase in defect detection rate over multiple test cycles.

Fig. 4. Defect Detection Rate over Test Cycles.

D. Stability and Regression Failure Trends

One of the most important goals of regression automation is to reduce regression failure due to new code

change. Failures are high in manual regression testing and often do not find all defects efficiently.

Automation of tests runs the scripts the same way repeatedly, finding regression early and having fewer

failures. The table II below compares the regression failure rate before and after automation, demonstrating

a significant reduction in failure rates, thereby improving software stability and reliability.

TABLE II- COMPARISON OF FAILURE RATES BEFORE AND AFTER AUTOMATION ACROSS

TEST CYCLES

Fig. 5. Regression Failure Rate Reduction Trend.

Test Cycle Failure Rate

Before

Automation

(%)

Failure Rate

After

Automation

(%)

Cycle 1 18 9

Cycle 2 15 7

Cycle 3 12 6

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 9

F. Code Coverage Enhancement

Eliminating manual regression testing greatly increases the area of code coverage in relation to the size of

the computer code being tested. More code coverage also results in more functionality verified that would

be missed by defect detection in critical modules. The increase of code coverage to automate and before

automation is shown in this figure 6, showing that automation increases in software reliability.

Fig. 6. Code Coverage Before and After Automation.

V. CONCLUSION

In this study, automated regression testing is important, as it speeds up the testing time and keeps the bug

free of production products. For organizations, the replacement of labor intensive labor intensive manual

testing by structured automation leads to faster test execution leading to higher defects detection rate and

better quality of software validation. It is found that failure rates can be minimized and all test cases to be

covered with test prioritization, automated test maintenance, and self healing mechanisms. Despite the

initial investment in tools, infrastructure, and skilled resources, the long-term advantages of automation far

outweigh its challenges. This improves the organizations’ efficiency, and scalability, and easier integration

with CI/CD pipelines in order to do continuous testing and frequent software releases with no compromise

of stability. In addition it puts forward the need of structured test suite design and robust maintenance

strategies to keep effectiveness of automation over time. Future work can focus on improving the

automation frameworks, test suite selection strategy as well as maintainability to further improve the

efficiency of the regression testing. In reality, the organizations that can strategically promote automation

can speed up their development cycle, improve product reliability, and remain competitively aggressive in

the rapidly changing software field.

REFERENCES:

[1] D. Elsner, R. Wuersching, M. Schnappinger, A. Pretschner, M. Graber, R. Dammer, and S.

Reimer, “Build system aware multi-language regression test selection in continuous integration,”

In Proceedings of the 44th International Conference on Software Engineering: Software

Engineering in Practice, 2022, May , pp. 87-96.

[2] T. A. Nițescu, A. I. Concea-Prisăcaru, and V. Sgârciu, “Test Automation for Continuous

Integration In Software Development”.

[3] S. Ali, Y. Hafeez, M. Humayun, N. Z. Jhanjhi, and R. M. Ghoniem, “An Aspects Framework for

Component-Based Requirements Prediction and Regression Testing,” Sustainability, vol. 14, no.

21, pp. 14563, 2022.

[4] V. V. Krishna, and G. Gopinath, “Agile Test Automation For Web Application Using Testng

Framework With Random Integration Algorithm In Machine Learning To Predict Accuracy And

Response Time On Automated Test Results,” Journal of Theoretical and Applied Information

Technology, vol. 100, no. 16, 2022.

[5] R. Othman, and S. Zein, “Test Case Auto-Generation For Web Applications: A Model-Based

Approach,” In 2022 International Symposium on Multidisciplinary Studies and Innovative

Technologies (ISMSIT). IEEE, 2022, October, pp. 18-25.

https://www.ijirmps.org/

Volume 12 Issue 4 @ July-Aug 2024 IJIRMPS | ISSN: 2349-7300

IJIRMPS2404232360 www.ijirmps.orgWebsite: Email: editor@ijirmps.org 10

[6] A. Geistanger, K. Braese, and R. Laubender, “Automated data analytics workflow for stability

experiments based on regression analysis,” Journal of Mass Spectrometry and Advances in the

Clinical lab, vol. 24, pp. 5-14, 2022.

[7] R. R. Karn, R. Das, D. R. Pant, J. Heikkonen, and R. Kanth, “Automated testing and resilience of

microservice’s network-link using istio service mesh,” In 2022 31st Conference of Open

Innovations Association (FRUCT). IEEE, pp. 79-88, 2022, April.

[8] L. Yin, H. Zhang, Z. Tang, J. Xu, D. Yin, Z. Zhang, and X. Liu, “rMVP: a memory-efficient,

visualization-enhanced, and parallel-accelerated tool for genome-wide association study,”

Genomics, proteomics & bioinformatics, vol. 19, no. 4, pp. 619-628, 2021.

[9] M. Felderer, and R. Ramler, “Quality assurance for AI-based systems: Overview and challenges

(introduction to interactive session),” In Software Quality: Future Perspectives on Software

Engineering Quality: 13th International Conference, SWQD 2021, Vienna, Austria, January 19–

21, 2021, Proceedings Springer, vol. 13, pp. 33-42, 2021

[10] F. Almeida, J. Simões, and S. Lopes, “Exploring the benefits of combining devops and agile,”

Future Internet, International Publishing, vol. 14, no. 2, pp. 63, 2022.

[11] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement learning for test case prioritization,”

IEEE Transactions on Software Engineering, vol. 48, no. 8, pp. 2836-2856, 2021.

[12] F. S. Ahmed, A. Majeed, T. A. Khan, and S. N. Bhatti, “Value-based cost-cognizant test case

prioritization for regression testing,” Plos one, vol. 17, no. 5, pp. e0264972, 2022.

[13] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more

informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,”

Peerj computer science, vol. 7, pp. e623, 2021.

[14] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, “Design, monitoring, and testing

of microservices systems: The practitioners’ perspective,” Journal of Systems and Software, vol.

182, pp. 111061, 2021.

[15] A. Tyagi, “Intelligent DevOps: Harnessing Artificial Intelligence to Revolutionize CI/CD

Pipelines and Optimize Software Delivery Lifecycles,” Journal of Emerging Technologies and

Innovative Research, vol. 8, pp. 367-385, 2021.

[16] M. Neelapu, "Impact of Cross-Functional Collaboration on Software Testing Efficiency,"

International Journal of Innovative Research in Engineering & Multidisciplinary Physical

Sciences, vol. 10, no. 6, Dec. 2022, Article 232322.

[17] M. Neelapu, "Hybrid Testing Frameworks: Benefits and Challenges in Automation,"

International Journal for Multidisciplinary Research, vol. 4, no. 6, Nov.–Dec. 2022.

[18] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically evaluating readily available

information for regression test optimization in continuous integration,” In Proceedings of the 30th

ACM SIGSOFT international symposium on software testing and analysis, pp. 491-504, 2021,

July.

[19] Mohnish Neelapu, “Impact of cross-functional collaboration on software testing efficiency,”

International Journal of Innovative Research in Engineering & Multidisciplinary Physical

Sciences, vol. 10, no. 6, 2022, Article 232322.

[20] Mohnish Neelapu, "Enhancing Agile Software Development through Behavior-Driven

Development: Improving Requirement Clarity, Collaboration, and Automated Testing ESP,”

Journal of Engineering & Technology Advancements, vol. 3, no. 2, pp. 153-161, 2023.

https://www.ijirmps.org/

