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Abstract 

Protein Remote Homology Detection and Fold Recognition is a fundamental task in bioinformatics, 

essential for understanding protein functions, facilitating drug discovery, and annotating genes. 

Traditional approaches, such as Convolutional Neural Networks (CNNs), often face challenges in 

processing the vast and complex data associated with protein sequences, leading to difficulties in 

accurately recognizing protein homologies. This paper introduces a novel approach leveraging Graph 

Convolutional Networks (GCNs) to address this challenge and to prune uninformative edges within 

the graph, effectively reducing noise and enhancing the accuracy and efficiency of homology 

detection. By embedding protein sequences into a vector space and using a Softmax classifier for final 

classification, the GCN method captures intricate relationships among proteins, resulting in superior 

performance compared to existing methods. 

The proposed method's effectiveness is validated through extensive experiments on benchmark 

datasets, including SCOP 1.53, SCOP 1.67, and superfamily datasets, demonstrating significant 

improvements in prediction in terms of accuracy, precision, recall and F-measure. The findings 

expose the potential of GCNs in Remote Homology Detection and Fold Recognition. 

Keywords: Remote Homology Detection and Fold Recognition, Graph Convolutional Networks 

(GCN), Softmax Classifier 

1. Introduction 

Remote Homology Detection and Fold Recognition is a cornerstone of bioinformatics and 

computational biology, playing a critical role in deciphering the evolutionary relationships among proteins. 

These relationships are vital for numerous applications; including protein function prediction, drug 

discovery, and gene annotation, all of which have profound implications in both scientific research and the 

pharmaceutical industry. As biological data continues to expand exponentially, the challenge of accurately 

recognizing protein homologies from vast and complex protein sequences has become increasingly 

pronounced [1]. 
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Traditional methods for Remote Homology Detection and Fold Recognition, particularly those 

utilizing Convolutional Neural Networks (CNNs), have shown significant promise due to their ability to 

automatically learn features from raw data, a key advantage over earlier hand-crafted feature approaches [2]. 

However, despite their success in various domains, CNNs are not ideally suited for handling the non-

Euclidean nature of biological data, such as protein sequences, which are better represented as graphs. The 

fixed-size grid structure inherent in CNNs limits their capability to capture the intricate, non-linear 

relationships that characterize biological data, leading to inefficiencies in learning and difficulties in 

accurately recognizing remote protein homologies [3]. 

The complexity of Remote Homology Detection and Fold Recognition is further compounded by the 

fact that protein sequences often contain a vast amount of uninformative or redundant data. CNNs, when 

applied to such large-scale sequences, may struggle to effectively filter out this noise, which can result in 

reduced prediction accuracy and increased computational costs [4]. This limitation is particularly evident in 

the context of large-scale datasets, where the processing of redundant features can lead to significant 

inefficiencies in the learning process [5]. 

To address these challenges, this research introduces a novel approach based on Graph 

Convolutional Networks (GCNs). GCNs are a type of neural network specifically designed to operate on 

graph-structured data, making them exceptionally well-suited for tasks involving the analysis of complex 

relationships within biological networks [6]. Unlike CNNs, GCNs are inherently capable of handling the 

non-Euclidean nature of biological data, which allows them to capture more complex and meaningful 

relationships among protein sequences. This capability is particularly valuable in the context of Remote 

Homology Detection and Fold Recognition, where understanding the intricate connections between proteins 

is crucial for accurate homology detection [7]. 

In this research, the GCN method is further enhanced by integrating a Softmax classifier, which is 

used to classify proteins based on their embedding in a vector space. In this vector space, proteins that share 

similar characteristics are positioned closer together, facilitating more accurate and efficient homology 

detection [8]. This approach not only improves prediction accuracy but also accelerates the convergence of 

the model and reduces computational overhead, making it more suitable for large-scale bioinformatics 

applications [9]. 

The proposed GCN-based method is validated through extensive experiments on well-established 

benchmark datasets, including SCOP 1.53, SCOP 1.67, and superfamily datasets. These experiments 

demonstrate the superiority of the GCN model over traditional CNN-based approaches, particularly in terms 

of evaluation metrics of computational efficiency [10]. The findings suggest that GCNs, with their ability to 

control the significant advancement in the field of Remote Homology Detection and Fold Recognition [11]. 

2. Literature Review 

The recognition of remote protein homologies is a basic challenge in bioinformatics, crucial for 

understanding evolutionary relationships, predicting protein functions, and advancing drug discovery 

efforts. Over the years, various computational methods have been developed to tackle this problem, each 

with its strengths and limitations. 

The Basic Local Alignment Search Tool (BLAST) marked a significant milestone in sequence 

analysis. BLAST's ability to quickly identify regions of similarity between sequences has made it a widely 

used tool for detecting homologous proteins. Its underlying algorithm relies on pairwise sequence 
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alignment, where sequences are compared directly to identify similar regions that may indicate evolutionary 

or functional relationships [12]. However, BLAST's approach is less effective for identifying remote 

homologs, especially when sequence similarity is low due to extensive evolutionary divergence. 

To address the limitations of direct sequence alignment methods like BLAST and Hidden Markov 

Models (HMMs), a more advanced approach was developed by modeling the conserved regions of protein 

families probabilistically. This allows the detection of remote homologs even when sequence similarities are 

not immediately apparent through direct comparison [13]. HMMs have become a critical tool in 

bioinformatics, particularly for tasks that involve detecting protein families and identifying functional motifs 

within sequences. 

Despite the advancements offered by HMMs, the growing complexity and scale of biological data 

necessitated the exploration of more powerful computational techniques. Machine learning methods, 

particularly Support Vector Machines (SVMs), were introduced to enhance protein classification tasks and 

incorporating pairwise sequence similarity scores into an SVM framework, the detection of remote protein 

homologies could be significantly improved [14]. SVMs provided a flexible and robust way to classify 

proteins, leveraging the ability to learn from complex and high-dimensional data. However, traditional 

machine learning approaches like SVMs often struggle to fully capture the intricate relationships within 

large-scale biological datasets, particularly when the data is represented in non-Euclidean spaces such as 

graphs. 

The advent of deep learning further revolutionized the field, with Convolutional Neural Networks 

(CNNs) being particularly effective for tasks involving the extraction of features from biological sequences. 

CNNs have been applied to Remote Homology Detection and Fold Recognition with considerable success. 

It was proved that CNNs could automatically learn hierarchical features from protein sequences, leading to 

improved recognition of remote homologs [15]. However, CNNs are inherently limited by their grid-based 

architecture, which is not well-suited for the non-linear and irregular structure of biological data. This 

limitation is particularly problematic in the context of protein sequences, where the relationships between 

amino acids are better represented as graphs rather than as linear or grid-like structures. 

To overcome the constraints of CNNs, researchers have increasingly turned to Graph Convolutional 

Networks (GCNs). GCNs are designed to operate directly on graph-structured data, making them ideal for 

tasks where the data's inherent structure is non-Euclidean [16]. GCNs have shown significant promise in a 

variety of applications, including Remote Homology Detection and Fold Recognition, where they can model 

the complex relationships between proteins more effectively than traditional deep learning methods. By 

leveraging the graph structure, GCNs can capture both local and global patterns within the data, leading to 

more accurate predictions of remote homologies. 

The development of graph embedding techniques has further enhanced the utility of GCNs in 

bioinformatics. Graph embedding methods transform graph-structured data into continuous vector 

representations, which can then be used for various downstream tasks such as classification and clustering. 

Node2Vec algorithm is a prime example of this approach, offering a scalable method for learning feature 

representations from graph data by optimizing a trade-off between breadth-first and depth-first search 

strategies [17]. In the context of Remote Homology Detection and Fold Recognition, graph embedding 

allow for the effective representation of protein sequences in a way that captures their structural and 

functional relationships, facilitating more accurate homology predictions. 
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The integration of graph attention mechanisms with GCN represents another significant 

advancement in the field. Graph Attention Networks (GAT), which employ attention mechanisms to 

differentially weight the contributions of neighboring nodes during the aggregation process [18]. This 

selective focus on the most informative connections enhances the ability of GCNs to capture complex 

relationships in biological data, further improving the accuracy of Remote Homology Detection and Fold 

Recognition. 

The integration of GCN with other deep learning models, such as auto encoders and variation auto 

encoders, has opened new avenues for Remote Homology Detection and Fold Recognition research [19]. 

These hybrid models combine the strengths of GCN in handling graph-structured data with the generative 

capabilities of auto encoders, leading to more accurate and robust homology predictions [20]. On graph-

based methods for protein structure alignment exemplifies this approach, highlighting the potential of hybrid 

models to address the challenges of Remote Homology Detection and Fold Recognition [21]. 

3. Methodology of Proposed work 

In this section, the EHACBLalign-GCN method for Remote Homology Detection and Fold 

Recognition is explained briefly. A block diagram of the EHACBLalign-GCN method is presented in Figure 

1. 

Figure 1. Block Diagram of EHACBLalign-GCN method 

 

After generating MSAs using EHACBLalign and extracting TAF (Top-N-gram, ACC-PSSM, 

Features), the GCN followed by a softmax classifier is used for Remote Homology Detection and Fold 

Recognition.  

https://www.ijirmps.org/


Volume 12 Issue 6                                       @ November - December 2024 IJIRMPS | ISSN: 2349-7300 

IJIRMPS2406231665          Website: www.ijirmps.org Email: editor@ijirmps.org 5 

 

3.1. Design of EHACBLalign - GCN Model 

The Remote Homology Detection and Fold Recognition using MSAs followed by graph learning 

model comprise two stages. In stage 1, a Protein Similarity Graph (PSG) is created, whereas in Phase 2, the 

protein remote homologs on the graph generated are recognized. 

Stage 1: Generate a graph depending on predefined thresholds on alignment scores:  

It involves constructing a network where nodes represent protein sequences, and edges indicate significant 

alignment scores between them. The alignment scores, which measure the degree of similarity between 

protein sequences, are first computed using a sequence alignment tool or algorithm. These scores are then 

compared against a predefined threshold to determine whether an edge should be created between two 

nodes. (i) If the alignment score between two sequences exceeds the threshold, an edge is drawn, signifying 

a meaningful similarity or potential homology. This threshold-based graph generation allows the 

construction of a protein similarity network that highlights only the most relevant connections, thereby 

reducing noise and enhancing the clarity of relationships within large biological datasets. The resulting 

graph is a sparse representation of the protein sequences, emphasizing only those relationships that meet the 

criteria for significant similarity, which is crucial for downstream tasks such as clustering, classification, or 

further analysis in bioinformatics. (ii) Prune the graph to preserve informative edges: Pruning helps to 

enhance the recognition accuracy. In this stage, the following different methods are applied to induce 

sparsity in the Protein Similarity Graph by pruning uninformative edges.  

Stage 2: Categorize nodes on the sparse graph: After obtaining the sparse PSG, the embedding of the 

nodes is obtained by the unsupervised graph learning model for Remote Homology Detection and Fold 

Recognition. The processes in this model are unsupervised graph clustering, unsupervised node embedding, 

and semi-supervised GCN. In a graph clustering technique, the PSG is grouped into many clusters based on 

the Markov clustering scheme with every cluster defining a protein remote homologs. Because this 

clustering does not utilize ground truth classes (protein homologs), it is called an unsupervised scheme. In 

the unsupervised node embedding technique, nodes are embedded to a -dimensional vector space using the 

DeepWalk method such that connected nodes on the graph remain close in the embedding space. After 

embedding of nodes is acquired, a softmax classifier is trained to recognize the protein remote homologs 

according to node embedding. At last, the semi-supervised GCN method requires ground truth homologs for 

a subset of proteins. According to the ground truth labels for a subset of vertices, the GCN model is trained 

and utilized to recognize protein remote homologs for other nodes in the test data. 

4. Experimental Results 

The performance of the proposed EHACBLalign-GCN method is evaluated with the existing models 

such as the DeepBLAST, Graph-BERT and EHACBLalign-CNN in the MATLAB 2019b using three 

benchmark datasets, namely the SCOP 1.53, SCOP 1.67, and the superfamily corpus are acquired to assess 

the effectiveness of selective MSA algorithms. The SCOP 1.53 dataset possesses 4532 PSs from 54 groups, 

whilst the SCOP 1.67 dataset possesses 11037 PSs from 102 groups. The superfamily dataset possesses 

1195 folds of 1962 superfamilies. A superfamily is a corpus that contains labels for each PS's morphological 

properties. Depending on a collection of HMMs that represent structural protein motifs at the tier of the 

SCOP superfamily, it was built. The labels are produced by matching PSs from approximately 2478 fully 

sequenced genomes to HMMs. 
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4.1 Accuracy 

The accuracy is calculated using  

                        (1) 

 

Figure 2. Comparison of Accuracy for EHACBLalign – GCN Method against Existing Models / 

Methods using SCOP 1.53, SCOP 1.67 and Superfamily Datasets 
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The accuracy of EHACBLalign – GCN is 95.8%, 95.3% and 94.7% respectively for SCOP 1.53, SCOP 1.67 

and Superfamily datasets which are higher when compared with well-known models / methods as shown in 

Figure 2. 

4.2 Precision 

It specifies the percentage of perfectly aligned locations. 

                                   (2) 

 

Figure 3. Comparison of Precision for EHACBLalign-GCN Method against Existing Models / 

Methods using SCOP 1.53, SCOP 1.67 and Superfamily Datasets 
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The precision of EHACBLalign – GCN is 95.11%, 94.96% and 95.08% respectively for SCOP 1.53, SCOP 

1.67 and Superfamily datasets which are higher when compared with well-known models / methods as 

shown in Figure 3. 

4.3 Recall 

It specifies the proportion of precisely aligned residues among those that are aligned. 

                                              (3) 

Figure 4. Comparison of Recall for EHACBLalign-GCN Method against Existing Models / Methods 

using SCOP 1.53, SCOP 1.67 and Superfamily Datasets 
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The recall of EHACBLalign – GCN is 95.25%, 95.09% and 95.31% respectively for SCOP 1.53, SCOP 

1.67 and Superfamily datasets which are higher when compared with well-known models / methods as 

shown in Figure 4. 

4.4 F-measure 

It defines the F-measure of proposed and existing Protein Remote Homology Detection and Fold 

Recognition techniques 

    (4) 

Figure 5. Comparison of f-measure for EHACBLalign-GCN Method against Existing Models / 

Methods using SCOP 1.53, SCOP 1.67 and Superfamily Datasets 
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The F-measure of EHACBLalign – GCN is 95.18%, 95.03% and 95.2% respectively for SCOP 1.53, SCOP 

1.67 and Superfamily datasets which are higher when compared with well-known models / methods as 

shown in Figure 5. 

4.5 ROC and ROC50 

A comparison of ROC and ROC50 values for the EHACBLalign-GCN method against 

DeepBLAST, Graph-BERT, and EHACBLalign-CNN models on the SCOP 1.53 dataset is demonstrated in 

Figure 6(a) and 6(b).  

Figure 6 (a) Comparison of ROC for EHACBLalign-GCN Method against Existing Models / Methods 

using SCOP 1.53 Dataset 

 

Figure 6 (b) Comparison of ROC50 for EHACBLalign-GCN Method against Existing Models / 

Methods using SCOP 1.53 Dataset 
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It can be addressed that the ROC of the EHACBLalign-GCN method is increased by 4.91%, 2.33%, 

and 0.5% compared to the DeepBLAST, Graph-BERT, and EHACBLalign-CNN models, respectively. 

Also, the ROC50 of the EHACBLalign-GCN method is 6.49%, 2.66%, and 1.1% greater than the 

DeepBLAST, Graph-BERT, and EHACBLalign-CNN models, respectively. This realizes that the 

EHACBLalign-GCN method can enhance the Remote Homology Detection and Fold Recognition 

performance in contrast with the other models on the SCOP 1.53 dataset. 

Figure 7 (a). Comparison of ROC for EHACBLalign-GCN Method against Existing Models/ Methods 

using SCOP 1.67 Dataset 

 

 

Figure 7(b). Comparison of ROC50 for EHACBLalign-GCN Method against Existing Models/ 

Methods using SCOP 1.67 Dataset 
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A comparison of ROC and ROC50 values for the EHACBLalign-GCN method against 

DeepBLAST, Graph-BERT, and EHACBLalign-CNN models on the SCOP 1.67 dataset is shown in Figure 

7(a) and 7(b). It can be noted that the ROC of the EHACBLalign-GCN method is increased by 3.33%, 

2.03%, and 1.01% compared to the DeepBLAST, Graph-BERT, and EHACBLalign-CNN models, 

respectively. Also, the ROC50 of the EHACBLalign-GCN model is 5.63%, 3.4%, and 1.36% greater than 

the DeepBLAST, Graph-BERT, and EHACBLalign-CNN models, respectively. This indicates that the 

EHACBLalign-GCN method can improve the Remote Homology Detection and Fold Recognition 

performance compared to the other models on the SCOP 1.67 dataset. 

Figure 8(a) and 8(b) plots the ROC and ROC50 values of the EHACBLalign-GCN model against 

DeepBLAST, Graph-BERT, and EHACBLalign-CNN models on the superfamily dataset. It can be seen that 

the ROC of the EHACBLalign-GCN method is 4.31%, 2.38%, and 1.01% higher than the DeepBLAST, 

Graph-BERT, and EHACBLalign-CNN models, respectively. Also, the ROC50 of the EHACBLalign-GCN 

model is 4.05%, 2.5%, and 0.78% superior to the DeepBLAST, Graph-BERT, and EHACBLalign-CNN 

models, respectively. This shows that the EHACBLalign-GCN method boosts the efficiency of recognizing 

the protein remote homologs compared to the other models on the superfamily dataset. 

Figure 8(a).  Comparison of ROC for EHACBLalign-GCN Method against Existing Models / Methods 

using Superfamily Dataset 
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Figure 8(b).  Comparison of ROC50 for EHACBLalign-GCN Method against Existing Models / 

Methods using Superfamily Dataset 

 

Conclusion 

In this work, the EHACBLalign-GCN method was developed to improve the evaluation metrics of 

detecting protein remote homologies. In this method, the EHACBLalign-GCN prunes uninformative edges 

for better prediction of accuracy, precision, recall and F-measure. EHACBLalign-GCN method is trained 

using the ground truth labels for predicting families. The experimental results proved that the 

EHACBLalign-GCN method achieved better values for the evaluation metrics viz., accuracy, precision, 

recall and F-measure, with regard to Remote Homology Detection and Fold Recognition. 
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