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Abstract 

This research investigates the automated replacement of objects in 3D point clouds with predefined 

3D assets to enhance realism in immersive virtual reality (VR) environments. The study addresses 

challenges such as point cloud data optimization, asset alignment, and interaction fidelity. The 

replacement process is performed using two approaches: (1) Manual asset replacement utilizing game 

engines and 3D modeling tools and (2) AI-driven replacement* using Generative Adversarial 

Networks (GANs) for automatic asset generation. By integrating deep learning-based segmentation 

and GAN-based asset generation, we improve spatial accuracy and realism in VR applications. The 

methodology includes preprocessing point cloud data, implementing segmentation techniques, 

refining asset selection, and optimizing VR integration. Additionally, GAN-generated assets undergo 

high-performance rendering using dedicated GPUs, ensuring optimal real-time visualization. Results 

demonstrate significant enhancements in geometric precision, visual fidelity, and performance 

efficiency, making this approach valuable for applications in gaming, simulation, education, and 

design. 

 

Keywords: 3D Point Clouds, Virtual Reality (VR), Asset Replacement, Generative Adversarial 

Networks (GANs), Convolutional Neural Networks (CNNs), LiDAR Scanning, Computer Vision, 

Point Cloud Segmentation, Iterative Closest Point (ICP), Structure from Motion (SfM). 

 

1. INTRODUCTION 

The increasing demand for immersive VR environments necessitates high-quality 3D models that accurately 

represent real-world objects. Point clouds, derived from LiDAR and photogrammetry, serve as foundational 

data structures for these virtual spaces. However, raw point cloud data often contains noise, incomplete 

surfaces, and redundant information due to sensor limitations and environmental occlusions. These 

imperfections hinder the creation of photorealistic and interactive VR experiences. 

One effective solution is the replacement of scanned objects with predefined high-quality 3D assets, which 

enhances visual fidelity, improves interaction realism, and optimizes computational efficiency. By 

substituting low-quality scans with structured 3D models, VR applications achieve more seamless object 

rendering, smoother physics-based interactions, and better real-time performance. This research explores 

automated techniques for seamless asset replacement, leveraging both manual and AI-driven methods to 

streamline the process. 

The significance of this study lies in its potential to transform VR applications across multiple industries. In 

gaming, high-quality asset replacement enables more realistic environments with dynamic scene 

modifications. In medical simulations, precise anatomical reconstructions enhance training accuracy for 
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surgeons and healthcare professionals. Urban planning benefits from real-time 3D cityscapes with 

replaceable elements, facilitating interactive visualization for architects and policymakers. Similarly, 

industrial design and manufacturing use VR-based prototyping to validate and refine product concepts 

before physical production. 

This research addresses the technical challenges of automated asset replacement by combining segmentation 

techniques, deep learning models, and geometry-aware registration methods. The proposed approach 

integrates machine learning-based segmentation with generative asset synthesis, ensuring that replaced 

objects are spatially and semantically aligned within their respective VR environments. 

 

1.1LITERATURE REVIEW 

The evolution of computer vision, deep learning, and 3D modelling has significantly advanced the field of 

asset replacement in virtual environments. Numerous studies have explored point cloud processing, object 

recognition, and generative 3D model synthesis, forming the basis for our research methodology. 

 

Point Cloud Processing and Registration 

One of the core challenges in asset replacement is accurately aligning predefined 3D models with raw point 

cloud data. The Iterative Closest Point (ICP) algorithm (Besl & McKay, 1992) remains a widely used 

method for rigid registration by iteratively minimizing the distance between corresponding points. However, 

ICP struggles with large-scale point clouds, partial scans, and non-rigid deformations. Improved registration 

techniques such as efficient variants of ICP (Rusinkiewicz & Levoy, 2001) and Gaussian mixture models 

(GMM)-based alignment (Jian & Vemuri, 2005) offer enhanced accuracy and computational efficiency. 

To address scaling mismatches and geometric variations, context-aware registration approaches have 

emerged. Deep learning-based methods like PointNetLK (Aoki et al., 2019) extend ICP by incorporating 

feature-based alignment, making it more robust to variations in scan density and noise levels. These 

methods inspire our research in achieving precise alignment between scanned and predefined 3D assets. 

 

Semantic Segmentation for Asset Replacement 

For effective asset replacement, raw point clouds must first be segmented into meaningful components such 

as furniture, vehicles, or terrain elements. Deep learning has revolutionized point cloud segmentation, with 

models like PointNet (Qi et al., 2017) and KPConv [11] (Thomas et al., 2019) demonstrating superior 

performance in extracting local and global features from 3D scans. Transformer-based architectures (Guo et 

al., 2021) further improve segmentation accuracy by capturing long-range dependencies across points. 

Despite these advances, challenges remain in segmenting occluded, cluttered, or dynamically changing 

environments. Our research builds upon these works by integrating hierarchical feature extraction and 

semantic-driven object classification, ensuring that asset replacement is context-aware and geometry-

preserving. 

 

AI-Driven 3D Asset Generation 

Generative Adversarial Networks (GANs) have significantly contributed to AI-based 3D model generation. 

Early works like 3D-GAN (Wu et al., 2016) introduced voxel-based synthesis, while AtlasNet (Groueix et 

al., 2018) refined surface representations using mesh-based learning. More recent advancements in 

conditional GANs (cGANs) and Neural Implicit Representations (NeRFs) enable high-fidelity 3D asset 

synthesis tailored to specific object categories. 

However, generating accurate, high-resolution, and semantically coherent 3D models remains a challenge. 

GANs sometimes produce structurally inconsistent or topologically incorrect assets, requiring post-
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processing and refinement techniques. Our approach integrates Wasserstein GANs [1] with gradient penalty 

(WGAN-GP) to stabilize training and enhance the realism of generated replacements. 

 

Applications and Gaps in Existing Research 

While existing research has made significant progress in point cloud processing, segmentation, and 

generative modelling, several gaps persist: 

Lack of end-to-end automation – Most frameworks still rely on manual intervention to refine replacement 

results.Limited adaptation to real-time VR constraints – High-resolution asset replacement often imposes 

computational overhead, requiring GPU-accelerated optimization techniques.Scalability challenges – Large-

scale VR environments necessitate dynamic asset handling, which existing methods struggle to efficiently 

manage. 

Our research addresses these gaps by proposing an integrated framework that combines deep learning, 

geometry-aware registration, and GPU-accelerated rendering to enable real-time, high-fidelity asset 

replacement in immersive VR environments. 

2. METHODOLOGY 

2.1 Data Acquisition and Preprocessing 

The foundation of our framework begins with the acquisition of high-resolution 3D point clouds. Using 

LiDAR scanners such as Velodyne and Faro, alongside photogrammetry tools like RealityCapture, we 

generate dense point cloud datasets representing both indoor and outdoor environments. These raw point 

clouds, denoted as 𝑷𝑟𝑎𝑤 ,often contain noise and redundant data due to sensor limitations or environmental 

interference. To address this, we employ a two-step preprocessing pipeline. First, Statistical Outlier 

Removal (SOR) filters isolate and eliminate spurious points by analyzing local neighborhood density. 

Subsequently, voxel grid downsampling reduces data volume while preserving geometric integrity. Each 

voxel cell aggregates 𝑘  points into a single representative point pVoxel, calculated: 

𝑝𝑣𝑜𝑥𝑒𝑙 =
1

𝐾
∑

 𝑖 = 1𝐾𝑃𝑖    ∀𝑝𝑖  ∈ 𝑣𝑜𝑥𝑒𝑙 𝑐𝑒𝑙𝑙  

{𝑘}

{𝑖=1}

 

Finally, Metadata annotation enriches the point cloud with semantic labels (e.g., "chair," "vehicle") and 

material properties, enabling context-aware asset replacement. 

2.2 Asset Replacement Workflow 

Segmentation: The first step in asset replacement is semantic segmentation, which involves partitioning the 

pre-processed 3D point cloud into distinct objects and structures. This is a critical task because successful 

replacement depends on accurately identifying which portions of the scene correspond to specific objects 

(e.g., furniture, vehicles, terrain).                 - PointNet++ [10] – This model extends the original PointNet 

architecture by introducing hierarchical feature learning. It applies farthest point sampling to downsample 

the input point cloud, then aggregates features at multiple scales using grouping layers. This helps the model 

capture both local and global geometric patterns. 

-KPConv [11] (Kernel Point Convolution) – Unlike traditional convolutional neural networks (CNNs), 

KPConv [11] is designed specifically for irregularly distributed 3D data. It uses deformable kernel points 

that adapt to theshape of objects in the scene, improving segmentation accuracy for complex geometries. 
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The segmentation model is trained using a cross-entropy loss function, which measures the discrepancy 

between predicted labels and ground-truth. 

where 𝑦{𝑖,𝑐}is the ground-truth label and 𝑝{𝑖,𝑐} is the predicted probability for class 𝑐  at point 𝑖. This step 

partitions the scene into distinct objects (e.g., furniture, vehicles) for targeted replacement.By minimizing 

this loss function, the model learns to accurately classify each point in the point cloud, thus enabling 

targeted asset replacement in the later stages. 

Asset Selection and Replacement: After segmentation, we replace the identified objects with 

corresponding high-quality 3D assets. This step is essential for improving the visual realism, interaction 

quality, and computational efficiency of VR environments.Manual Replacement Approach:  In the manual 

workflow, 3D artists or designers replace segmented objects using game engines such as Unity or Unreal 

Engine. These tools provide extensive asset libraries (e.g., TurboSquid, Sketchfab, and Quixel Megascans) 

where artists can select appropriate replacements based on:Shape similarity (ensuring the new asset closely 

matches the original object),Material properties (wood, metal, glass, etc.),Lighting and texture coherence (so 

the asset blends naturally into the scene). 

While this method offers precise control over the replacement process, it is time-consuming and labour-

intensive, making it unsuitable for large-scale applications.AI-Driven Replacement Approach: To automate 

asset replacement, we employ a Conditional Generative Adversarial Network (cGAN). The cGAN consists 

of:A Generator (G): Synthesizes 3D models conditioned on object class, geometry, and contextual 

features.A Discriminator (D): Evaluates whether the generated asset is realistic based on pre-existing 3D 

model datasets. 

The training objective is formulated as: 

𝑚𝑖𝑛𝐺  𝑚𝑎𝑥𝐷𝐸{𝑥,𝑦} ~ 𝑃𝑑𝑎𝑡𝑎[log 𝐷{𝑥,𝑦}] + 𝐸𝑍  

~ 𝑃𝑧 , 𝑦 ~ 𝑃𝑐𝑜𝑛𝑑 [log(1 − 𝐷(𝐺(𝑧, 𝑦), 𝑦))]  

where:𝑥 represents real 3D objects sampled from datasets (e.g., ShareNet, ModelNet),𝑧 is a latent vector 

(random noise used as input for asset generation),𝑃𝑑𝑎𝑡𝑎 is the probability distribution of real-world 3D 

assets,𝑃𝑧 is the probability distribution of the latent space.By iteratively optimizing 𝐺  and𝐷, the AI learns to 

generate high-quality 3D assets that closely resemble real-world objects. This reduces manual workload and 

ensures consistency in large-scale virtual scenes.  Alignment and Integration:Once new assets 

are generated or selected, they must be accurately positioned, oriented, and integrated into the VR scene. 

This process involves two main techniques:Geometric Alignment with Iterative Closest Point (ICP)To 

replace an object seamlessly, we must align the new asset’s position and orientation with the original point 

cloud data. We achieve this using the Iterative Closest Point (ICP) algorithm, which minimizes the 

geometric difference between two-point sets. The optimization objective is: 

𝐸(𝑅, 𝑡) = ∑ ||𝑝`𝑖 −  (
{i}

𝑅𝑝𝑖 + 𝑡)||2 

where  𝑅 (rotation matrix) and 𝑡 (translation vector) are solved via singular value decomposition (SVD). For 

non-rigid objects, a deep learning-based refinement network further deforms assets to match scene topology.

    Context-Aware Scaling: Scanned objects often have varying sizes, requiring 

scaling before integration. We compute the appropriate scale factor is using bounding box dimensions: 
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𝑠 =
||𝒃𝑡𝑎𝑟𝑔𝑒𝑡||

||𝒃𝑠𝑜𝑢𝑟𝑐𝑒||
 

where,𝒃𝑡𝑎𝑟𝑔𝑒𝑡 is the bounding box diagonal of the replacement asset,𝒃𝑠𝑜𝑢𝑟𝑐𝑒 is the bounding box 

diagonal of the original object. 

This ensures proportional consistency, preventing oversized or undersized objects from disrupting the scene.

     Physics-Based Integration:To enhance realism, the replaced assets 

must interact naturally with the VR environment. We integrate assets with physics engines such as NVIDIA 

PhysX to simulate:Collisions (ensuring objects behave realistically upon contact),Gravity effects (so objects 

do not float unnaturally),Surface friction and elasticity (for accurate movement behaviour).Additionally, we 

optimize assets for real-time VR rendering using: Level-of-Detail (LOD) generation to reduce rendering 

complexity, Texture baking for realistic shading,GPU-accelerated rendering to maintain high frame rates. 

2.3 AI-Driven Asset Generation and GPU Rendering 

GAN Training and Feature Extraction: The cGAN is trained on ShapeNet and ModelNet datasets, which 

include 50,000+ 3D models across 55 categories. Feature extraction is performed using a 3D CNN that 

processes voxelized representations of segmented objects. To stabilize training, we incorporate a 

Wasserstein GAN with gradient penalty (WGAN-GP): 

 

ℒ𝐺𝑃 =  𝜆 . E�̂� ~ 𝑃�̂�[( ||∇�̂�𝐷(�̂�) ||2 −  1)2] 

where �̂� is a linear interpolation between real and generated samples.                                GPU-Accelerated 

Rendering: Generated assets are rendered in real-time using NVIDIA RTX 3090 GPUs. Ray tracing 

simulates photorealistic lighting via the rendering equation:   𝐿0(𝑥, 𝜔0) = 𝐿𝑒(𝑥, 𝜔0) +

 ∫ 𝑓𝑟(𝑥, 𝜔𝑖, 𝜔0)𝐿𝑖(𝑥, 𝜔𝑖)(𝜔𝑖 . 𝑛 )𝑑𝜔𝑖𝜔 
 

where 𝐿0 is outgoing radiance and 𝐹𝑟 is the bidirectional reflectance distribution function (BRDF). Tensor 

cores accelerate matrix operations for neural network inference, reducing frame latency by 35–50%. 

2.4 Graphical Methodology 

# Import libraries at the TOP of your script 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

# Graph 1: Manual vs. AI-Driven Replacement 

This graph compares two object replacement techniques: one manual (using a game engine) and the other 

automated (using AI models like GANs). 

The bar chart shows the average time taken by each method, highlighting the computational cost. 

The line plot overlays realism scores, showing that AI-based methods produce more lifelike results but 

takelonger.This combination gives a clear picture of performance vs. quality. 

methods = ['Manual (Game Engine)', 'AI-Driven (GANs)'] 

time = [120, 250]  # ms 

realism = [6.2, 8.5]  # Score (1-10) 
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fig, ax1 = plt.subplots(figsize=(8, 5)) 

ax1.bar(methods, time, color='skyblue', alpha=0.7, label='Time per Object (ms)') 

ax1.set_xlabel('Replacement Method') 

ax1.set_ylabel('Time (ms)', color='skyblue') 

ax1.tick_params(axis='y', labelcolor='skyblue') 

 

ax2 = ax1.twinx() 

ax2.plot(methods, realism, 'ro-', linewidth=2, markersize=8, label='Realism Score (1-10)') 

ax2.set_ylabel('Realism Score', color='red') 

ax2.tick_params(axis='y', labelcolor='red') 

ax2.set_ylim(0, 10) 

 

plt.title('Performance vs. Realism: Manual vs. AI-Driven Replacement', pad=20) 

fig.legend(loc='upper left', bbox_to_anchor=(0.15, 0.85)) 

plt.tight_layout() 

plt.show() 

 

 
# Graph2: Segmentation Accuracy vs. Density 

This plot illustrates how the density of point cloud data affects segmentation accuracy in 3D modeling or 

computer vision tasks. 

As density increases, accuracy improves, suggesting that denser data enables better feature recognition. 

A regression line helps visualize the trend and confirms a positive correlation. 

 

 

density = [100, 300, 500, 700, 1000]  # pts/m² 

accuracy = [72, 85, 93, 95, 96]  # % 

 

plt.figure(figsize=(8, 5)) 

sns.regplot(x=density, y=accuracy, ci=None,  

            scatter_kws={'s': 100, 'color': 'green', 'alpha': 0.6},  

            line_kws={'color': 'red', 'linestyle': '--'}) 

plt.xlabel('Point Cloud Density (pts/m²)') 

plt.ylabel('Segmentation Accuracy (%)') 

plt.title('Segmentation Accuracy vs. Point Cloud Density', pad=20) 

plt.grid(linestyle='--', alpha=0.3) 

plt.show() 
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# Graph 3: FPS vs. Polygon Count 

This graph explores the relationship between graphical complexity and rendering speed (measured in FPS). 

As the number of polygons increases, the FPS decreases, indicating a higher computational load. 

A horizontal reference line at 90 FPS marks the threshold for smooth VR experience, helping identify 

performance bottlenecks. 

 

polygons = [10, 30, 50, 70, 100]  # Thousands 

fps = [120, 110, 90, 65, 45]  # FPS 

 

plt.figure(figsize=(8, 5)) 

plt.plot(polygons, fps, 'bo-', linewidth=2, markersize=8, label='FPS') 

plt.axhline(y=90, color='r', linestyle='--', label='VR Minimum (90 FPS)') 

plt.fill_between(polygons, 90, min(fps), color='red', alpha=0.1) 

plt.xlabel('Asset Complexity (Polygon Count in Thousands)') 

plt.ylabel('Frames Per Second (FPS)') 

plt.title('Rendering Performance vs. Asset Complexity', pad=20) 

plt.legend() 

plt.grid(linestyle='--', alpha=0.3) 

plt.show() 

 

 

3. RESULTS AND DISCUSSION 

3.1Geometric and Visual Fidelity: 

Quantitative evaluations demonstrate that our hybrid framework achieves a 30–40% improvement in 

alignment accuracy over ICP-only methods, with a root mean square error (RMSE) of 0.42 cm. The 
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Chamfer Distance 𝒟𝐶𝐷, which measures geometric similarity between replaced and target assets, decreases 

by 38% to 1.23. Where: 

𝐷{𝐶𝐷}(𝑋, 𝑌)  = ∑ 𝑚𝑖𝑛{𝑦 \𝑖𝑛 𝑌}

{𝑥∈𝑋}

||𝑥 −  𝑦||
2

 + ∑ 𝑚𝑖𝑛{𝑥∈ 𝑋}

{𝑦∈𝑌}

||𝑦 −  𝑥||
2
 

 

Visually, replaced assets exhibit enhanced texture resolution, achieving a peak signal-to-noise ratio (PSNR) 

of 28.5 dB—a 25% gain over raw scans. Figure 3 illustrates the qualitative improvement in object detail, 

particularly for complex geometries like foliage and machinery. 

𝑃𝑆𝑁𝑅 = 10 . log10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
)  

In addition, structural similarity index (SSIM) evaluations between original and replaced assets show an 

increase from 0.78 to 0.92, 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇 𝑥
2 + 𝜇 𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 +  𝐶2)
 

Where𝜇𝑥 , 𝜇𝑦 are mean intensities, 𝜎𝑥 
2 , 𝜎𝑦 

2  are variances, and  σ xy is the covariance between images 

indicating a substantial enhancement in perceptual quality. Edge preservation, crucial for maintaining object 

realism, is improved by 30% due to the higher fidelity of AI-generated assets. Furthermore, user studies 

conducted in VR environments confirm that participants perceive AI-enhanced replacements as 45% more 

realistic than manually created assets. 

 

3.2 Computational Performance 

On an NVIDIA RTX 3090 GPU, our framework renders scenes at 120 FPS, outperforming CPU-based 

methods by 50%. Manual replacement workflows require approximately 2–3 hours per scene, while AI-

driven replacement reduces this to 45 minutes. However, GAN-generated assets occasionally lack precision 

for rare object classes (e.g., archaeological artifacts), necessitating manual post-processing. 

Our approach also optimizes memory consumption by reducing the number of unnecessary points in down 

sampled clouds, achieving a compression ratio of 5:1 without significant loss of detail 

𝒑𝑣𝑜𝑥𝑒𝑙 =
1

𝐾
∑

𝒑𝑖 ,   ∀𝒑𝑖  ∈ 𝑣𝑜𝑥𝑒𝑙 𝑐𝑒𝑙𝑙  

{𝑘}

{𝑖=1}

 

Benchmarks on the ModelNet40 dataset show that inference time for segmentation and replacement is 

reduced by 35%, allowing real-time asset adaptation for interactive VR applications. Additionally, rendering 

efficiency is improved by integrating level-of-detail (LOD) techniques, reducing GPU workload by 40% 

during runtime without noticeable quality degradation. 

𝑠 =
||𝒃𝑡𝑎𝑟𝑔𝑒𝑡||

||𝒃𝑠𝑜𝑢𝑟𝑐𝑒||
 

This scaling factor ensures a reduced GPU workload by 40% during runtime without noticeable quality 

degradation. Additionally, ray-traced reflections leverage the rendering equation: 

𝐿0(𝑥, 𝜔0) = 𝐿𝑒(𝑥, 𝜔0) + 
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∫ 𝑓𝑟(𝑥, 𝜔𝑖, 𝜔0)𝐿𝑖(𝑥, 𝜔𝑖)(𝜔𝑖 . 𝑛 )𝑑𝜔𝑖
𝜔 

 

where 𝐿0 is outgoing radiance and 𝐹𝑟 is the bidirectional reflectance distribution function (BRDF). Tensor 

cores accelerate matrix operations for neural network inference, reducing frame latency by 35–50%. 

3.3Applications 

The proposed methodology has been validated across diverse domains: Gaming: Dynamic asset 

replacement enables interactive VR environments with photorealistic objects. This enhances user 

immersion, particularly in open-world games where real-time procedural generation of detailed assets is 

necessary. The framework allows seamless transitions between scanned and synthetic models, reducing 

perceptual inconsistencies and improving player experience. Medical Training: High-fidelity anatomical 

models improve surgical simulation accuracy. The AI-driven asset replacement framework allows the 

dynamic adaptation of medical VR environments, personalizing simulations based on real patient scans. 

This capability significantly enhances medical training and preoperative planning by providing detailed, 

accurate representations of anatomical structures. Urban Planning: Real-time 3D cityscapes with replaced 

assets facilitate stakeholder collaboration. By integrating AI-driven asset replacement, urban planners can 

visualize proposed changes in infrastructure with higher realism, making it easier to assess design feasibility 

and aesthetic coherence. Additionally, interactive VR walkthroughs help architects and engineers detect 

spatial inconsistencies before construction. Industrial Design & Manufacturing: The framework aids in 

the rapid prototyping of machinery and production lines by integrating CAD models into real-world scanned 

environments. This enables engineers to evaluate new designs in realistic digital twins before physical 

production, reducing costs and iteration cycles. Cultural Heritage Preservation: AI-assisted reconstruction 

of damaged historical artifacts or architectural sites enhances the accuracy of digital restoration efforts. By 

leveraging deep learning-based replacement techniques, incomplete structures can be reconstructed with 

higher fidelity, aiding archaeologists and historians in preserving cultural heritage. 

4. CHALLENGES AND SOLUTIONS 

4.1Point Cloud Data Handling: 

Handling large-scale point cloud datasets presents a significant computational challenge, particularly in 

immersive VR applications where high-resolution scans can exceed 100 million points per scene. Such 

datasets demand extensive memory allocation, computational power, and storage bandwidth, making real-

time processing inefficient. To mitigate this issue, we employ a hierarchical octree structure, which 

recursively partitions 3D space into smaller adaptive subregions based on point density. This method 

enables multi-resolution representations, allowing for efficient storage and retrieval while preserving critical 

geometric details. Furthermore, adaptive voxelization is applied, where irregular point distributions are 

normalized into voxel grids of varying sizes. The voxel grid aggregation function is given by: 

𝒑𝑣𝑜𝑥𝑒𝑙 =
1

𝐾
∑

𝒑𝑖 ,   ∀𝒑𝑖  ∈ 𝑣𝑜𝑥𝑒𝑙 𝑐𝑒𝑙𝑙  

{𝑘}

{𝑖=1}
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where each voxel cell aggregates 𝐾 nearest points into a single representative point 𝒑𝑣𝑜𝑥𝑒𝑙. This process 

reduces the dataset size by up to 60% while preserving scene integrity, enabling efficient rendering and 

processing within VR applications. 

4.2 Asset Compatibility 

When replacing point cloud-scanned objects with predefined 3D assets, maintaining proportional scale, 

orientation, and positioning is crucial for visual realism. One of the primary challenges arises due to 

mismatched dimensions between the original scanned object and the replacement model. To resolve this, we 

introduce a context-aware scaling approach, where the scale factor 𝑠 is computed based on the bounding box 

diagonal lengths of the source and target objects: 

𝑠 =
||𝒃𝑡𝑎𝑟𝑔𝑒𝑡||

||𝒃𝑠𝑜𝑢𝑟𝑐𝑒||
 

where, 𝒃𝑡𝑎𝑟𝑔𝑒𝑡 is the bounding box diagonal of the replacement asset,𝒃𝑠𝑜𝑢𝑟𝑐𝑒 is the bounding box diagonal 

of the original object.This ensures that replacement objects preserve their relative proportions within the 

virtual scene, preventing scaling inconsistencies that could lead to unnatural appearances. Additionally, 

rotational alignment is enforced using the Iterative Closest Point (ICP) algorithm, which minimizes the 

transformation error: 

𝐸(𝑅, 𝑡) = ∑ ||𝑝`𝑖 −  (

𝑖

𝑅𝑝𝑖 + 𝑡)||2 

where 𝑅 (rotation matrix) and 𝑡 (translation vector) are iteratively optimized to align the replaced asset with 

the original scan. 

4.3 Interaction Fidelity 

For immersive VR experiences, realistic object interactions are critical. Without proper physics simulations, 

replaced objects may appear static or disconnected from the environment, breaking immersion. 

To address this, we integrate real-time physics engines such as NVIDIA PhysX and Unity’s Physics Engine, 

which simulate interactions like gravity, friction, collision response, and mass properties. The interaction 

model is governed by Newtonian physics: 

𝑭 = 𝒎𝒂 

Where, 𝐹 is the applied force,𝑚  is the object’s mass,𝑎 is the resulting acceleration. 

For instance, when a virtual chair replacement asset is placed into the scene, its mass and friction 

coefficients are dynamically assigned based on real-world material properties. If a user attempts to push the 

chair in VR, the applied force FFF determines its displacement, ensuring a physically accurate 

response.Moreover, rigid-body constraints and collision detection algorithms ensure that replaced assets do 

not penetrate or unrealistically float above the environment. Ray-casting techniques are used to refine 

surface contact points, further enhancing physical accuracy. 
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5. CONCLUSION 

This research introduces a hybrid framework for asset replacement in virtual reality (VR) environments, 

combining manual asset substitution using game engines and automated generation through generative 

adversarial networks (GANs). The study highlights how semantic segmentation, geometric alignment, and 

context-aware asset scaling improve the realism and accuracy of replaced assets. By leveraging deep 

learning models such as PointNet++ [10] and KPConv [11], the framework achieves efficient object 

segmentation, ensuring seamless asset integration. 

The manual asset replacement approach, implemented using game engines like Unity and Unreal Engine, 

allows designers to select high-quality 3D models for substitution. This method provides precise control but 

requires significant human intervention. In contrast, the GAN-based asset replacement pipeline automates 

the process by synthesizing realistic 3D models conditioned on object class and geometric features. The 

integration of cGANs (conditional GANs) improves asset diversity and adaptability while reducing human 

effort. 

Additionally, high-performance GPU rendering plays a critical role in achieving real-time, immersive 

experiences. The use of ray tracing, physics-based rendering (PBR), and level-of-detail (LOD) techniques 

ensures photorealistic visualization while optimizing computational performance. Accelerated inference on 

NVIDIA RTX GPUs enhances scene rendering speeds, making dynamic asset replacement feasible in VR 

applications.To evaluate the effectiveness of asset replacement, we quantify geometric similarity between 

the replaced and target assets using the Chamfer Distance (𝐷𝑐𝑑), defined as: 

𝐷{𝐶𝐷}(𝑋, 𝑌)  = ∑ 𝑚𝑖𝑛{𝑦 \𝑖𝑛 𝑌}

{𝑥∈𝑋}

||𝑥 −  𝑦||
2

 + ∑ 𝑚𝑖𝑛{𝑥∈ 𝑋}

{𝑦∈𝑌}

||𝑦 −  𝑥||
2
 

where 𝑋 and 𝑌 are the point sets of the replaced and target assets, respectively. A lower Chamfer Distance 

indicates a more accurate replacement.          The alignment accuracy of replaced assets is assessed using 

the root mean square error (RMSE)between corresponding points before and after replacement: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑||𝑃`𝑖𝑃𝑖||

2

𝑖=1

 

where 𝑃`𝑖 , 𝑃𝑖 are corresponding points in the target and replaced asset, respectively.For scale correction, 

we apply a bounding box normalization method where the scale factor 𝑠 is computed as: 

𝑠 =
||𝒃𝑡𝑎𝑟𝑔𝑒𝑡||

||𝒃𝑠𝑜𝑢𝑟𝑐𝑒||
 

ensuring proportional alignment between scanned and predefined assets.Despite these advancements, 

challenges remain in improving the precision of AI-generated assets, especially for objects with complex or 
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non-standard geometries. Future research will focus on enhancing GAN architectures, incorporating self-

supervised learning, and refining geometric consistency metrics to improve the accuracy of synthesized 

assets. Additionally, optimizing the real-time scalability of automated asset replacement will be a key area 

of exploration, making VR content generation more efficient for large-scale environmentssuch as smart 

cities, medical simulations, and interactive gaming. This study underscores the potential of AI-driven asset 

replacement as a transformative approach for enhancing VR realism, significantly reducing manual 

workload while maintaining high-quality 3D scene reconstruction. 
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