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Abstract: 

The dual challenge of the climate crisis and increasing anthropogenic pressure highlights an urgent call 

for collaborative global governance for the management of sustainability to safeguard collective 

wellbeing. Addressing the climate change dilemma entails shared collective responsibility for ecological 

and social justice and, thus, provides an important context for decision-making on governance for 

societal transitions towards political, economic, and cultural systems that are socially inclusive, 

equitable, and environmentally safe. Such societal-level decisions are often abstracted by model 

representations of increasingly sophisticated climate models, which remain heavily reliant on numerical 

simulations. Particularly at local scales, bottom-up models that utilize site-specific datasets for 

vulnerable communities can provide estimates of climate change worldwide. However, the 

requirements for high-fidelity climate simulation models are the frequency and prevalence of model 

outputs relative specific areas of interest, such as cities and regions, as well as at the decision-support 

time scale of local climate mitigation and adaptation policy. 
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1. INTRODUCTION 

With the recent proliferation of Artificial Intelligence (AI), digital technology enabled bottom-up models are 

now capable of predicting climate variables at unprecedented temporal and spatial resolutions. While the 

technical prerequisites of machine learning are big data, fast computers, and new algorithms for associative 

data pattern mining, the historical lack of big site-specific datasets, especially on weather, makes the 

utilization of prediction models for localized decisions support an elusive goal. The recent creation of global 

and local multi-attribute tracking datasets enables the construction of site-specific datasets of historical 

climate variables, together with data on influencing environmental, economic and social factors. The novel 

local solutions to historical data limitations in fact open the path for the potential of localized AI prediction 

models, not just to fill in gaps for site-specific climate variables at the monthly-level decision-support 

timescale, but also to aid with training climate forecasting models at different aggregational levels. 

 

2. OVERVIEW OF CLIMATE CHANGE 

Climate change is a long-term shift in temperature and weather patterns, both globally and regionally. 

Although climate change is a natural phenomenon, since the 1800s, human activities, particularly fossil fuel 

combustions, have been acting as a “forcing” factor enhancing the natural greenhouse effect by releasing 

greenhouse gas emissions into the atmosphere, leading to climate warming. Extreme weather events, such as 

droughts, cyclones, floods, or heatwaves, can result from climate change. Some regions may also experience 

cooling, perhaps due to the disruption of ocean currents and the transfer of heat from the tropics to high 

latitudes. As these weather events grow in intensity and regularity, the demand for climate adaptation rises, 

as does the call for climate mitigation. When focusing on disruptive climate effects, the needs for disaster 

response and recovery also gain importance. We often forget about slow-onset effects, such as loss of 

biodiversity, acidification, or increases in sea level, temperature, and desertification but human and life-

system adaptation and resilience-building to such ongoing changes are critical. 

 

Concerned about the human-induced speed and scope of climate change, the scientific community convinced 

politicians of the environmental problems that could result from climate change, particularly as these problems 
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could spread globally. New scientific fields were created, such as Earth system science, climate impact 

research, and sustainability research, focusing on climate change as a conceptual link between computers. In 

the 1980s, the realization emerged that actions were needed to avoid the most severe effects of climate change. 

However, the estimates of the degree of anthropogenic influence started with large uncertainties. Also, the 

interactions of climate change with other sustainability challenges, such as biodiversity loss and poverty, were 

not well understood yet. 

 

3. THE ROLE OF AI IN CLIMATE SCIENCE 

Much of the modeling applied to climate data is done through the prism of physics-based models, where the 

governing equations are derived from first principles, or statistical techniques, which attempt to identify and 

fit empirical relationships in the data. The contribution from informed computing applied almost exclusively 

through machine learning has, until recently, been limited, with many climate modeling presentations at major 

conferences with focus on cosmology or Earth observation. Recently however, this has started to change, with 

the climate science community more willing to build collaborations with computer scientists pushing 

innovation in ML. 

 

ML is now used in a wide range of applications in climate science and climate-related fields: from forecasting 

severe weather events like hurricanes, typhoons and floods, through improved representation of physical 

processes like convection in models, downscaling the coarse resolution of general circulation models to 

produce regional and higher resolution climate projections, identifying climate variability and narrowing 

down the sources of extreme weather events, to using climate models to better understand climate’s role in 

infectious diseases spread or using climate and social data to predict climate-related migration. Opportunities 

obviously exist in many more areas, and new promising ML techniques for areas like bias correction and 

model emulation have been developed that address the inherent challenges in applying ML in climate science. 

The research climate scientists and machine learning specialists have opened the door to new climate research 

opportunities, but much work remains to fairly test and validate the ML techniques, secure the essential 

lengthy climate model integrations necessary to analyze long-term climate change, and interpret the results 

physically and statistically. 

 

 
 

3.1. Machine Learning Techniques 

Traditionally, climate modeling has relied on explicit physics to drive our understanding of climate feedbacks 

and climate processes, hence the phrase “physics-guided” models. However, essentially all physics-guided 

models have physical parameters that must be interpreted and/or constrained. Machine learning is playing an 
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increasing role in interpreting these parameters and learning new parameterizations. There is great promise in 

exploring our understanding of climate and weather as an explicit input-output function, or system. Therefore, 

the concept of learned systems is becoming more popular. Several recent reviews detail the use of machine 

learning in improving or enhancing long-standing climate models, or component parts thereof, with machine 

learning. For example, they review applications in which machine learning is used to replace subgrid 

parameterizations such as for deep convection, boundary layer processes, and turbulence in the atmosphere, 

rain formation and the development of clouds and precipitation, evapotranspiration and budget, ocean mixing 

and eddy variability, inflow or outflows from glaciers, snow and ice dynamics, and carbon processes for 

ecosystem and land surface models. Other experts have examined more broadly the intersection of machine 

learning and the geophysical sciences. 

 

For the specifics of climate projections, training of neural networks often uses covariance data transfer via 

longitude-latitude from a high-resolution simulation and maps it to a coarser domain neural network. Machine 

learning could alleviate the shortcomings for bias and variance reduction, and information transfer between 

scales while currently enhancing primarily the Grand Challenge Parameterization Problem. However, the 

boundary conditions that make climate a unique system with seasonal to decadal predictability rest on specific 

generally chosen domain configurations, needed biases, untrained types of neural networks, and variable 

scales for a range of variables associated with climate-atmosphere interactions that can significantly influence 

parameterization error and climate sensitivity. 

 

3.2. Data Analysis and Interpretation 

Climate modeling is based on qualitative and quantitative analysis of observable variables, specific 

assumptions or hypotheses and physical equations that regulate climate behavior. The available climate-

related data are usually monitored with great resolution in the time domain but lower in the space domain. 

Furthermore, climate measurements sometimes show a high degree of noise. For these reasons, data 

processing is essential in climate science. 

 

Modern climate science mostly relies on the use of sophisticated data analysis techniques. Rarely qualitative 

or merely statistical analysis is sufficient, and physics-based models are required to describe the processes 

that underlie the variability of climate observables. The models can be in some case very complex. Other 

times a simpler model, able to capture the essential features that one intends to extract from the data, is 

preferred. A non-linear 1D advection and diffusion physical model of the time series of surface temperature 

anomalies is used as the template to analyze climate data. More ambitious studies attempting to invert a more 

complicated dynamical model of the Earth’s climate system to extract information starting from temperature 

anomalies are also being considered. 

 

Machine Learning and Artificial Intelligence are an emerging discipline that aims to develop schemes able to 

improve their performance by learning from data, without being explicitly programmed. Their ideas and 

methods are providing novel, powerful approaches for scientifically inspiring problem-solving questions. 

They have been successfully applied in a variety of different problems and fields, showing great success in 

both supervised and unsupervised paradigms. 

 

Machine Learning algorithms rely on robust statistical and probability theoretical principles and offer the 

possibility to replace or improve some of the traditional approaches in a scientifically inspiring way. The 

inherent parallel processing capabilities of Machine Learning algorithms enable to efficiently train models 

with a very large number of free parameters that allow them to represent the underlying data in a highly 

flexible way. 

 

4. AI APPLICATIONS IN CLIMATE MODELING 

Artificial intelligence, including its derivatives, such as machine learning, reinforcement learning, and deep 

learning, have emerged as some of the most important enablers in various climate prediction endeavors, 

especially in terms of data processing capabilities and speed. Earth system models consist of complex 

mathematical models of the Earth’s environment, which rely on numerical methods and physical equations to 
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simulate climate dynamics. Traditionally, the predictive skill of an Earth system model had been low on 

localized variables and at high spatiotemporal resolutions. Advanced computing technologies, including 

supercomputers and cloud computing, have enabled the training of large and complex numerical Earth system 

models that have superior skill on localized climate variables, such as temperature, precipitation, etc. 

Continuous improvements and innovations in both the design of the model architectures and global 

initialization preparatory processes have made the model hierarchies reach unprecedented capabilities in 

physically recognizing how climate variables interrelate at multiple timescales, from the synoptic and the 

seasonal to the decadal and the centennial, along with better recognition of climate shift and misbehavior 

patterns. Various types of AI-driven climate and weather prediction top benchmark performance in multiple 

centers across the world. 

 

4.1. Predictive Modeling 

The contribution of AI is indispensable for the optimal mapping between input and output data of climate 

models, as these maps often need to be approximated in a prediction model. For this purpose, AI techniques 

including Machine Learning and Deep Learning leverage state-of-the-art methods. Climate modeling is often 

executed based on physically-based Mathematical Models, which require knowledge of how to solve a set of 

complicated interconnected non-linear equations. Alternatively, statistical Machine Learning techniques 

minimize the number of assumptions on how to approximate the statistical dynamics of the unknown predictor 

of climate properties and use the abundance of climate data to learn possible approximations. While those 

Mathematical Models and Machine Learning techniques are often considered entirely separate, in recent years 

there has been increased interest in Hybrid Modeling approaches that combine Mathematical Models with 

data-driven Machine Learning techniques. In this approach, the Mathematical Model of the climate properties 

is used to train a low resolution model based on Machine Learning. There are multiple tasks in climate 

prediction including Numerical Weather Prediction, seasonal forecast, weather of the following summer and 

climatological prediction. 

 

The predicted data are provided in different time resolutions, which differ according to the modeled climate 

actions. The time resolution of the output data ranges from data corresponding to basic predictions based on 

high-resolution niche models used only at basic points through empirical downscaling supported by the 

Machine.  

 

4.2. Simulation of Climate Scenarios 

As stated earlier, AI relies on data input, and there are numerous sources that generate climate data from 

AMMs. AMMs have long been valuable tools used for producing dynamic climate data based on various 

driving inputs such as Solar radiation, Greenhouse gas emissions, and terrestrial forces. However, AMMs can 

take a hefty computational toll when generating high-resolution results over long time periods and do not 

support the generation of data with varying choices of parameters or driving inputs. AI is valuable in this 

process as it can offer speed up AMMs and produce novel outputs never computed by AMMs. 

 

For example, GANs have been used for producing high-fidelity climate data which are statistically 

indistinguishable from the data produced with AMMs. Coupled with methods such as transfer learning, GANs 

can imitate the behavior of AMMs without running them at high computational cost, thus allowing researchers 

and policymakers to quickly simulate and explore an array of climate scenarios. Traditionally, AMMs are run 

to provide an infrequent number of per-grid historical reanalysis products. However, GANs can quickly be 

used to produce multiple fine-resolution outputs for the same grid and desired time period which can be used 

for exploring the sensitivity of variation in model outputs to changes in input parameters. 

 

Novel GANs such as VarGAN and real-value GANs can be directly trained on actual physical model outputs. 

Due to the couple temporal and spatial correlation in temperature and precipitation variables, fine-tuning both 

GANs using the two-step training process has allowed researchers to produce historical fine-resolution climate 

data useful for various climate applications such as agriculture, hydrology, and tourism study. For example, 

GANs have been used for combining spatiotemporal datasets and downscaling precipitation variables for 

hydrological studies. 
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5. INTEGRATION OF AI WITH TRADITIONAL CLIMATE MODELS 

The predictions of future climate state and change are typically generated through global numerical models, 

known as General Circulation Models (GCMs). These models are based on physical principles, such as the 

conservation of mass, momentum, energy, water, etc., as formalized through the Navier-Stokes equations of 

fluid motion and energy conservation principles known in meteorology as the equations of motion, 

thermodynamic energy equation, and equations of continuity and state. Everybody agrees that they are based 

on solid physics principles. However, because of the coarseness of GCM spatial grids (between 10 km and 

100 km), the parameterization of microphysics processes and feedbacks is needed for what cannot be directly 

resolved by a given GCM (typically, turbulent motion), as formalized through the so-called parameterization 

schemes. Parameterization schemes are also the crux of the problem, as they introduce considerable 

uncertainty in the GCM climate-response-to-CO2-increases that is used to calculate changes in future climate 

by forcing it with different pathway-specific scenarios of the rate-at which CO2 is released into the 

atmosphere. 

 

6. AI FOR SUSTAINABLE DECISION-MAKING 

We are at a crucial junction of the climate crisis, in which we need to accelerate climate action and change 

decision-making at all levels of society quickly and radically. Several recent calls to move beyond business 

as usual across public, private, and academic sectors highlight the need to address the issues of human and 

social behavior, as climate inertia cannot be simply explained by a lack of awareness about climate risks. The 

convergence of technological, economic, political, and sociocultural factors is pushing towards a transition in 

decision-making, an area where AI can provide solutions to complement climate modeling. AI can help us 

move beyond enabling technology that automates processes or tasks towards better decision support systems 

by manipulating unstructured data at a massive scale to extract information that can enhance awareness of 

climate change effects. Furthermore, data can be utilized to better develop instruments and mechanisms for 

decision-making that can drive a more effective transition to a sustainable future. In this section, we review 

selected applications of AI, such as those based on big data, machine learning, and agent-based modeling, in 

two of the areas that we believe AI can best contribute to. Specifically, we discuss resource management, 

while focusing on policy formulation. 

 

AI-based systems can help us devise a proper energy transition strategy by creating models that can accurately 

reproduce data regarding electricity demand, production, and exchange. These models can, in turn, be 

exploited to verify possible transition scenarios, such as a faster and larger introduction of renewable energy 

sources and related technologies, the introduction of dynamic pricing, demand-side management measures, 

or the use of batteries or demand response. Moreover, unlike traditional modeling methods, AI-based systems 

can naturally integrate the huge amount of unstructured information contained in social media. In particular, 

user-generated content allows for a much wider scope than is possible with traditional sources, such as 

household energy accounts or specialized surveys. AI can help to gather the will of the people, aggregating 

sentiments and opinions regarding the energy scenario, and bridging the gap between electricity supply and 

demand modeling to create more resilient social-technical systems. 

 

6.1. RESOURCE MANAGEMENT 

The traction gained by AI has ignited interest in deploying it to advance multiple spheres, climate resilience 

being one, as it requires prediction of extreme conditions in sufficient spatio-temporal resolution to influence 

climate-sensitive decisions. For example, agricultural yield prediction is crucial for a country, as crop failures 

could culminate to scarcity of food and later increase poverty, famine, and loss of lives. Earlier approaches 

based on dynamical models suffered from the disadvantage of being computationally expensive. 

 

AI models have proposed methodologies to address a variety of challenges for yield prediction, including 

handling large datasets, being independent of prior physical considerations about data; automation of the time-

consuming task of hyperparameter tuning for complicated neural network-based models over tailored metrics; 

uncertainty quantification, and handling sparsely sampled data comprising of only few seasons with 

successful crop yields. Similar AI-driven models have been developed for the estimation of above-ground 

biomass and crop water requirement. AI models are not limited to crop prediction alone but have also been 
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deployed for estimating the soil moisture in the US Corn Belt, which impacts the sowing and harvesting 

activities for crops. 

 

6.2. Policy Formulation 

Motivated by the recent developments in AI and the ever-increasing need for urgent responses to growing 

imbalances and disruptions in the climate system, there is a new wave of investments in AI for Climate. A 

significant share of these investments is currently targeting applications of AI that support the design and 

implementation of climate policies, especially those that are particularly critical for climate mitigation. For 

instance, funding organizations active in supporting climate-related scientific research have initiated 

partnerships with AI companies in order to facilitate the development of AI-informed monitoring assessments 

for national-level emissions inventories as well as regional and international policy scenarios analysis. Other 

knowledge system use cases for AI include climate feedback mapping for coastal cities; temporally high-

resolution urban-gravity modeled carbon emissions; emissions of marine traffic; carbon fluxes of oil and gas 

companies; observations data driven supply chain carbon footprints; and near real time satellite-based power 

grid and energy generation monitoring. 

 

From the perspective of policy modeling itself, recent years have witnessed a significant growth in the number 

of AI models developed for the task of estimating social-science-model-indicating Policy Meta-Parameters, 

like Elasticities. Both Data-Driven AI Approaches and Model-Based AI Approaches have been applied for 

increasing the quantity of available empirical knowledge on System-Wide Meta-parameter Uncertainties and 

Estimation Coverage of Structural Macro-economic Models, bearing the ambition of improving Policy Ex-

ante Evaluation and Model Updating Utility, which could potentially lead to spillover effects on Climate 

Policy Formulation and Political Decisions. Similarly, AI has also been applied for the task of Empirical Risk 

Reduction When Modeling the Macroeconomics for International Climate Cooperation within the framework 

of an Intertemporal General Equilibrium Approach to Solving Dynamic Games. 

 

7. CASE STUDIES OF AI IN CLIMATE INITIATIVES 

The use of artificial intelligence in climate action is innovative, and practitioners have recently taken steps to 

explore its potential. Some significant examples are described and categorized into Urban Planning Initiatives 

and Agricultural Practices Initiatives. 

7.1. Urban Planning 

Urban Perception utilizes deep learning and computer vision methods to extract urban land use characteristics 

from aerial and satellite images. Land use in the built-up environment is a significant contributor to energy, 

carbon, and water footprints. Their model automatically identifies buildings with saturation of energy and 

tourist movement. They concluded that policymakers should use high-resolution imagery for sustainable 

development. The system was thoroughly trained to quantitatively segment and recognize geo-spatial zones 

corresponding to carbon emission distributions. They found a perfect match at parking lots, Zhongdian, and 

airports, which are land use types that produce most of the distributed carbon emissions in West Coast cities. 

Urban Heat Islands create higher average city temperatures than surrounding rural areas because of heat 

retention by the artificial fruits of urban areas. Their predictive model for future heat islands showed that 

effective decision-making could require planting 10% more trees than predicted. 

7.2. Agricultural Practices 

AI has been introduced in precision agriculture and is often fused with agricultural drones. All these advanced 

technologies for farming by drones. Drones in precision agriculture improved efficiency, accuracy, and 

quality of crop strategizing and management. Drones on demand from drones are beyond any other channel 

of distribution. UAVs are convenient to sow seeds, create maps, check for plant illness, and locate weeds. The 

advanced UAVs have embedded sensors to check for crop maturity, real-time fertilizer prescription mapping, 

real-time weather monitoring, and UAV deliveries. 

7.1. Urban Planning 

Increased urbanization is drawing nearly 70% of the global population into urban clusters, which produce 

more than 80% of global emissions while having a smaller footprint compared to rural areas. These areas are 

also more vulnerable to climate change impacts like flooding, heat stress, and sea-level rise. AI has started to 

make significant contributions towards climate-informed decisions in urban planning policy. However, AI 
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can unintentionally worsen this complex affair if applied irresponsibly. Urbanization is more than just physical 

movement from rural to urban clusters; it involves a fundamental change in society's approaches towards 

modes of production, consumption, family structures, and political ideologies, among others. Therefore, 

climate change and urbanization are reciprocally related and must be strategically integrated to create climate-

resilient urban-planning policies, and speed up the transition towards a net-zero world. Moreover, integrating 

climate change into urban planning can also ensure long-term resilience of cities to the worst impacts of 

climate change. Urban planning can also affect how quickly cities can achieve their net-zero targets and how 

well they can accomplish the inevitable transition to a carbon-neutral economy. 

7.2. Agricultural Practices 

Keyword search: AI, agriculture, crop yield, decision-making, irrigation. 

Climate change is one of the factors affecting agricultural activities and increasing the food security gap. 

Droughts, floods, desertification, salinization, pests, and diseases not only contribute to crop yield loss but 

also destroy the long-borne eco-balance of the agricultural ecosystem. Besides, an excessive or unintended 

application of agricultural inputs also affects soil health, which is vital for sustainable food production. 

Precision farming can help reduce both these impacts and optimize crop production. So, the development of 

precision farming technologies through upscaling AI in agriculture would be the natural way to promote 

replenishment in food production. 

AI is being used for real-time and precise crop yield prediction that can help the authorities in promoting food 

security and help the organizations engaged in financial investments in estimating future returns. A highly 

relevant study highlighted that machine learning can predict crop yield as accurately as econometric models 

while enabling the use of various data sources. Some researchers even used machine learning-based 

approaches to determine more precisely the yield gap. According to some researchers, machine learning can 

be used for rice yield prediction using remote sensing data while another research methods used the Random 

Forest algorithm to predict cotton yield. Research has also applied a proprietary commercial agricultural AI 

to carry out wheat yield prediction in the United States through modeling and found great accuracy with 

various machine learning algorithms. Hence, machine learning and AI can be very useful for predicting crop 

yield accurately. 

 

8. CHALLENGES IN IMPLEMENTING AI IN CLIMATE SOLUTIONS 

AI remains at a nascent stage for many climate solutions. It has great potential, but a long way to go before 

mainstream deployment. The large computational needs for implementing some of the more promising 

solutions also hinder deployment for all but the richest organizations and companies. 

 

Data Quality and Availability 

The reliance on comprehensive, robust datasets is crucial. Data that is inaccurate or susceptible to biases can 

negatively impact models and subsequent results. The AI models need to be calibrated carefully to address 

the complexities in climate science where there are many unknowns or difficult-to-quantify uncertainties. AI 

is often considered a “black box” where only limited insights can be obtained with LLMs, deep reinforcement 

learning techniques, or other stochastic frameworks with limited explainability for the models. Therefore, 

deploying ML/DL without domain knowledge raises concerns about the reliability of predictions. An often-

cited issue with ML concerns the bias–variance dilemma: the inability to generalize to unseen situations is 

due, in part, to overfitting of the functions to very little data concerning previous weather system states. These 

concentrate on a small area relative to the amount of input variables available; thus, accurate transfer functions 

to climate models are very challenging. 

 

Ethical Considerations 

The importance of accuracy as well as explainability of AI models has broader implications. Deploying errant 

models can risk lives in the case of severe weather, natural disasters, predicting air quality, or prolonged 

effects on health from heatwaves, floods, and drought with possible economic impacts for regions without 

sufficient resources. The energy intensity of model training for the new class of LLMs deploying a large 

number of parameters that need to be optimized not only consume the allocated energy for the cloud or AI 

service user but also have cascading energy requirements that include internet data usage, cooling of servers, 
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as well as a prolonged demand for electricity in areas relying on fossil fuels which trigger spikes in carbon 

emissions. 

 

8.1. Data Quality and Availability 

Advances in AI, data, and computing power offer the possibility of untangling complex systems. The 

relationship between greenhouse gas emissions and climate change is far from the simple correlations 

observed between the increase in one and the other, and AI holds the potential to support modeling and 

understanding of the climate system, even to the discontent of researchers who have previously struggled to 

explain climate dynamics with simple models. But AI requires data, and the data requirements of AI typically 

far exceed for what is available on climate. For example, the data must be numerous enough to allow for 

statistical learning but also rich enough to represent the finer details of climate, such as the enormous amount 

of geographical surface heterogeneity and the clouds. 

 

To infer climate relationships, a relatively short historical observational record in the context of the long 

historical residence time of climate compared to the much slower historical pace of change in the underlying 

boundary conditions must be supplemented. Understanding climate and modeling predictions require different 

– often contrary – approaches to uncertainties compared to more tangible impacts such as agriculture or health, 

where AI is now widely deployed. Although agriculture and health services could offer the necessary training 

and learning opportunities, the scientific explanation of turnover times in climate could hinder motivation to 

produce good data to train AI. Generating accurate forward climate models often involves meeting 

assumptions of homogeneity, ergodicity, stationarity, or, in the absence of fundamental laws such as 

thermodynamics, assumptions of Gaussianity, known in statistics to be at odds with the nature of natural 

phenomena. Various degrees of inaccessibility due to provably hidden or transient variables may introduce 

additional problems. 

 

8.2. Ethical Considerations 

Despite the immense potential of AI to help mitigate climate change and its consequences, there are 

considerable challenges to its successful development and deployment in this realm. Apart from the issue of 

poor-quality and sparse data (which could result in poor predictive performance and potentially unsafe 

deployment), there are additionally specific ethical considerations that the field must necessarily focus on, 

such as responsibility and accountability, bias and discrimination, transparency, or privacy and data 

protection. 

 

Firstly, who is responsible if a climate model fails to make an accurate prediction and a region suffers from 

food desertion due to crop failure or suffers from devastating floods because of poor management of rivers? 

Who should be liable for this? A tech company offering services to mitigate this prediction error? The 

governmental agency deploying such solutions? Or the researchers developing the forecast model? Centering 

responsibility around one entity does not seem doable, given the many actors involved in such a complex 

decision and action chain. Rather, it seems prudent to agree on shared responsibility between the parties 

involved in the different stages of model development and deployment. However, this also requires clear 

channeling of liability, which may be more difficult in practice. Similarly, accountability seems difficult to 

transpose in this context. Climate crises can have impacts over various levels of society in each country, and 

people have little control over whether any party involved has made a climate-related decision that was 

unethical or wrong, affected the lives of those people, or even incurred substantial losses. Data-centered AI 

solutions increasingly demonstrate discriminatory flaws based on sensitive attributes, such as age, gender, 

ethnicity, or skin color. However, people victimized by these discriminatory algorithms currently have no 

right to inquire whether AI systems developers have identified or successfully reduced or mitigated sensitivity 

attributes. At the moment, there are no clear rules on the verification of AI systems functioning and 

predictions, whether for AI-based predictive climate models, or for AI-based cloud management functions, 

for instance. 
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9. FUTURE TRENDS IN AI AND CLIMATE RESEARCH 

As AI-enabled systems scale rapidly to unprecedented levels of generality, capability, and accessibility to 

global talent, and traversing the deep uncertainty and multiscale challenges that define decision making in 

response to climate change, it is worth considering what future research trajectories in climate, land use, and 

oceans call upon on AI's growing capabilities. A current trend in model design is to expand self-organizing 

models in terms of complexity and dimensionality. AI's growing abilities to learn models of images along 

with state of the art geodetic point cloud models in the forecasting of a diverse space of phenomena leads to 

expectation that self-organization with more model dimensions will increase the utility of AI-enabled models 

in regions of real space that receive little attention by physical models. The convergence of more sophisticated 

AI algorithms and breakthroughs in self-organizing model designs that can generate many accurate emergent 

solutions is likely to underpin success in AI-enabled modeling of extreme events. Recent results, combining 

advances in design, training, and inference of generative process rather than adversarial senior organizing 

models suggest that the capacity to capture the complexity of Asia's monsoon system will similarly increase. 

More generally, given the increasing forecastable complexity of changes to the climate, land systems, 

biosphere, and oceans, an unanticipated success will be the creation of AI-enabled models that generate 

emergency sets of solutions for catastrophic and existential risk events, for policymakers and pluralistic 

decision-making systems use. 

 

10. COLLABORATION BETWEEN AI EXPERTS AND CLIMATE SCIENTISTS 

One critical step in ensuring successful collaboration between AI and climate scientists is interdisciplinary 

education and training. As the AI field matures, climate research collaborations demand different educational 

pathways to develop specialists who can facilitate communication, create innovations, and advance important 

discoveries. Moreover, collaborative research design must counteract the entrenched traditions, incentives, 

and evaluation structures associated with each field through new approaches that reward community 

engagement, sharing credit, and, where possible, building of shared resources and infrastructures. Negative 

historical experiences, and in some cases, differences in workplace cultures between fields may necessitate 

careful negotiation before research can begin, and long-standing relationships should be cultivated to further 

build trust and encourage knowledge sharing. AI and climate scientists also must work together to explore 

potential technical limitations of existing AI approaches for climate research. Ideally, such assessments should 

take place during the initial phases of collaboration, when there is adequate time for discussion and 

brainstorming of innovative, interdisciplinary solutions and novel applications to complex climate questions. 

One of the most common critiques of contemporary AI approaches in niche domains is that they can be “black 

boxes” that offer little or no explanation of their categorizations or predictions. These “black boxes” can be 

problematic for AI experts. They may be wary of a wider implementation of AI methods in climate science, 

particularly in high-stakes decisions, such as those related to safety and policy, unless AI specialists were to 

thoroughly explain their rationale for the choice of methodology and the results of their prediction and lay 

bare its uncertainties and failure modes. At best, climate and AI scientists might jointly develop areas with a 

sound theoretical basis, so that AI “black box” methods could be implemented carefully for specific tasks, 

with appropriate considerations of uncertainty. 

 

11. FUNDING AND INVESTMENT IN AI FOR CLIMATE SOLUTIONS 

AI can have an important role in helping to solve climate problems. But this requires investment in the AI 

research required to deliver that potential. It emphasized the need for investment or funding needed to enable 

these AI-driven climate solutions. It notes that “disruptive innovations in mitigation technologies” will not 

happen automatically, but that there is a need for “urgent, economy-wide and currently available strategies” 

to tackle climate change, and these strategies need to be carefully designed to make the most of rapidly 

developing new technologies. 

 

This echoes the earlier findings about the importance of investment in basic AI research. Addressing climate 

issues requires long-term investment and funding in new climate-focused AIs, as well as research and 

innovation ecosystems that promote the building of AI tools and services which specifically support climate 

action plans, which often vary in scope from national down to local levels. Recent comments from influential 

figures regarding the need for more focus and investment argue additionally for funding bodies and investment 
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enterprises to focus more on AIs that can specifically be used to address climate challenges. AI's importance 

for solving climate concerns is evidenced by the substantial work on climate models. 

Investment areas should also aim to increase the adoption and dissemination of these AI tools. These efforts 

can contribute significantly to the global release of greenhouse gases, as well as emissions by other sectors 

that adversely affect the climate and the physical environment, such as tourism and biodiversity protection. 

AI-driven climate solutions must also seek to increase climate resilience in lower-income countries and 

communities. 

 

12. PUBLIC AWARENESS AND EDUCATION ON AI AND CLIMATE CHANGE 

The last chapter of this report underscored that awareness of the climate change problem and education on 

the power to harness technology, including AI, can positively impact decision-making that contributes to the 

climate agenda. The potential of AI for climate conscious decision-making is sizeable but not fully taken 

advantage of. Changing the way people view the new digital ecology that involves AI could be developed 

through awareness and educational programs. AI can assist climate change and members to track their 

footprint on this new connectivity model. Contributing positively to the climate agenda through the use and 

development of decentralized technologies and systems should become a social norm. Sharing power back to 

the people through positive advancement in trusted systems on the climate crisis can be a key component in 

helping more people think about decision-making and actions that can positively impact climate change. 

Society is continuously evolving. Viewing the way new technologies spend the limited resources of our world 

through the lens of contributing to minimizing its impact on the climate crisis should be developed, becoming 

social, educational, and corporate stages that influence individuals to fuse their self-interest with climate 

conscious choices. Making such choices should become an ethos. 

 

AI should be included in educational agenda policies to build a responsible generation of creators and 

consumers. Such initiatives should increase visibility of AI and what it can or cannot do, to prevent people 

from blindly giving in to AI’s capability. The hope is to develop a healthy relationship in the future generation. 

Finally, enhancing the relationship between AI and people through education can help people attain a better 

work-life balance while using AI in their everyday lives. 

 

13. INTERNATIONAL POLICIES AND AGREEMENTS 

This is a matter of science governance at the global level, regulating the issues inherent to our advances in 

earth system science, modeling and artificial intelligence. In doing innovative research and development of 

products in machine learning, deep learning and AI algorithms employing earth system data and engaging in 

their applications to climate and weather highly sensitive and policy relevant sectors, scientists need to adhere 

to ethical principles about how they represent the results of their work to the scientific community and beyond 

it. The scientific process and the use of scientific information for navigating the transitions needed for 

adaptation to climate change and mitigation to achieve the targets set are equally dependent on responsible 

policies, capacity, and infrastructure to help Investment. Transitioning Investment needs to be directed 

towards building climate and weather resilience, enabling high emitters globally and nationally to convert 

their economies sustainably through specific outlines in their NDCs. Acceleration in the transfer of technology 

and financial resources to help developing countries and potential achieve the targets in their NDCs in a 

manner that is realistic and commensurate to their situation is critical for determining success in preventing 

global temperature rise surpassing 2 oC and setting a lower threshold encouraging more ambitious reductions 

towards 1.5 oC. 

 

Execution of NDCs emission targets require deep decarbonization modeling of specific emitting sectors, along 

with specific processes within them, what to policy makers and climate scientists means specific physical 

representations of the way these processes interact, develop and evolve under the influences of local and 

regional socioeconomic aspects when subjected to global warming climate changes. The specific 

representations of processes and their interactions for sector and development pathway deep decarbonization 

modeling are inherently multiscale and must connect appropriately and reliably from general circulation 

model scale to the scales at which the processes and their interactions are represented for global to national to 

regional to sector to process specific development pathway climate change monitoring and projections. 
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14. TECHNOLOGICAL INNOVATIONS IN AI FOR CLIMATE ACTION 

Artificial intelligence has provided several new technological innovations to address climate mitigation and 

adaptation. Several AI-based climate products or services have already been developed and tested in various 

parts of the world. For instance, artificial intelligence is being used to support weather modeling and prediction 

at a finer geographical resolution with minimal costs. Weathering is vital for agriculture production in terms 

of assessing crop suitability, planning for optimal agricultural activities, forecasting pest and disease 

outbreaks, and improving digital agro-advisory services. Artificial intelligence is being used to provide 

accurate, high-resolution, and hyper-local weather forecasts for different sectors. The weather-as-a-service 

platform offers businesses access to critical weather data. The AI model trains and combines multiple neural 

networks to deliver weather forecasts that are more precise and can last up to 15 days with temporal 

granularity. 

 

There has also been a partnership to improve weather forecasting using AI. In another instance, AI is being 

leveraged to enhance weather modeling and improve forecasts using high-resolution data. The machine 

learning model predicts hourly precipitation up to 12 hours in advance, and it is claimed to perform better 

than existing standard methods. Climate change is causing the patterns of climate and weather conditions to 

change, resulting in more extremes and erratic patterns than before. Such changing cycles will add noise to 

our climate and weather predictions if predictive models are not retrained in tandem with the changing cycles. 

Consequently, substantiating the trusted forecasts, accurate analysis, and results provided by AI is crucial, as 

models also have their uncertainties and would be subject to errors. 

 

15. ROLE OF NON-GOVERNMENTAL ORGANIZATIONS 

As stated above, the entire world is in the race against climate change and NGOs also play an important part 

in this. Bridging the gaps between communities, grassroots action, decision-makers and climate scientists, is 

the first main task taken on by NGOs. The role of NGOs is mainly to assist in smooth transitions when all 

other methods for gathering data or taking actions fail. There is a lot of work done to take the initiative to 

raise awareness, add more voices against climate change, connecting communities who are working at a local 

level to connect with each other, etc. Organizations are working hard to carry out research tasks at a regional 

scale and perform climate modeling analysis at particular locations to assist local communities. Our better 

understanding of how climate science topics are perceived is due to an extensive body of research conducted 

by social scientists and NGOs. 
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The third main task is mobilizing as these organizations have extensive networks that can motivate widespread 

societies that cannot cope up with climate change anymore. These organizations shall help promote fear-

appeal material, since generally the non-climate NGO community remains unaware of how these factors might 

influence social interest in climate change. Integrating and sharing climate data related specifically to 

biodiversity can help bridge the gap and benefit both the climate and the environment NGOs, while providing 

the NGOs and Civil Society Organizations with motivation to foster climate data collection and sharing. The 

organizations operating around the world shall work to establish equitable relationships with the scientists in 

order to increase mutual understanding about climate data work and to develop routes for dissemination of 

climate data to the broader public. The scientific process must be open and transparent, allowing different 

priorities and concerns to be aired and debated in public forums where the possible ruptures and modifications 

in the relationships can be made explicit. 

 

16. INTERDISCIPLINARY APPROACHES TO CLIMATE CHALLENGES 

Translating knowledge into practice requires institutional mechanisms for collaboration and interdisciplinary 

study that presently do not exist, yet are necessary to discover new solutions bridging modern society with 

the natural world, and to encourage their widespread adoption. At several higher education institutions, 

interdisciplinary research centers unite scientists from diverse fields to study the methodological questions 

posed by the climate crisis - questions impossible to answer without contributions from multiple fields. The 

answers provided by this open discourse lay the foundation for new significant advances in the constituent 

disciplines. Achieving these advances, and then applying them to the resolution of specific difficulties, 

necessitates effective communication between researchers in the various disciplines and effective organization 

of student involvement. By forcing the world to adapt, climate change will create complex ethical dilemmas 

requiring collaboration by experts in diverse fields. People will be displaced; old jobs rooted in natural cycles 

will disappear; new ways of living will be imposed on our society. 

 

17. CONCLUSION 

In this chapter, we summarized the key ideas and findings of the present work, concerning the contributions 

of AI in climate modeling and in creating tools to support Sustainable Decision-Making (SDM). We first 

presented the background of the research and proposed a concise overview of the climate change context and 

a description of the phenomena of Climate Change and Global Warming (CW), presenting key concepts and 

definitions. Artificial Intelligence (AI) and its branches were also introduced, some more relevant concepts 

related to the use of AI in climate modeling and SDM were also presented, such as the Urban Heat Island 

(UHI) phenomenon, Explainable AI (XAI) and Fairness, and SDM using Integrated Assessment Models 

(IAMs), aimed mainly at policy makers. We pointed to the public perception of climate addressing the 

importance of how the CW problem has been communicated to all and how we must evolve in a way that 

reframes the CW decision-making problem. The contribution of Artificial Intelligence (AI) and its branches, 

focusing on Machine Learning (ML) and Deep Learning (DL), were then organized and discussed regarding 

Climate Modeling (CM) and Policy Making (PM) to reduce the impacts of climate change mainly from the 

Sustainable Development Goals (SDGs) perspective. 

 

Research on climate modeling by using AI techniques has recently been gaining ground, with many 

applications being proposed in the literature. Regardless of that, climate modeling is still highly demanding 

in computational terms, and some connections with PM continue lacking, which limits the use of AI 

techniques in SDM addressed to CW prevention or mitigation. The junction between climate modeling and 

philosophy of science is still underestimated, although many benefits, such as better modeling, understanding, 

use, and acceptance of AI and ML models, can emerge from that. AI techniques can be also used to support 

the configuration of models focusing on complex phenomena, or even at policy configurations related to CW. 
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