
Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 1

The Complete Reference: Grouping dataset using

JPA and Criteria Builder

Sachin Shridhar Padhye

Katy, Texas, U.S

sysachinp@gmail.com

Abstract

This paper presents high level design of grouping data on its and its children’s attribute using Java

Persistence API (JPA) and criteria builder future. Grouping of the data set is defined as view of the

data set based on unique value of one or more attributes. This paper describes the design and

approach to construct grouping criteria dynamically. Grouping criteria can be defined in JSON

format and then JSON will be parsed to create grouping query run time. JPA is implemented by

many leading OR mapping tools, which represents data Object Oriented Programming Models.

Criteria builder API provides a way to construct SQL queries dynamically against data objects

Keywords: Software Architecture, Microservices, Database, Object Oriented Programing, OR tools,

JPA, Criteria Builder, SQL

Introduction

In any software application data represents information which drives business operations. Data is created

and modified as per business rules which implements the business operation. There are different database

systems available to persist data based on the nature of the data. In software applications data sets, which are

related to each other and to save this data-set relational database is typically used. Data consists of keys and

values. Keys in data provide the context for values. In relational database system, data is stored in table.

Each row represents one dataset, keys are the columns, values are saved in corresponding cell. One of the

common requirements of the business is to group the data set based on keys and its specific values and then

consolidate the data set which is qualified for the group. E.g. Assume relational database stores Person’s

details. So, there will be Person table, attributes which identifies the person e.g. name, age, gender are

columns and each cell stores value for that attribute, like John Doe,35, Male. Below the sample Person data

in relational database.

id first name last-named age gender City state

1 John Doe 28 Male New York NY

2 Jane Smith 34 Female Los Angeles CA

3 Michael Johnson 45 Male Chicago IL

4 Emily Davis 22 Female Austin TX

5 David Wilson 30 Male Seattle WA

6 Sarah Martinez 29 Female Miami FL

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 2

There could be a business requirement to group peopleonGender, state and Age between ranges (0-5 ,6 -12,

13-18, 19-25,26-40, 40-60, 60+). There could be following groups can be created Male -> TX -> 40-60,

Female -> TX -> 19-22, Male -> CA ->26-40 and so on.

Structured Query Language (SQL) supports group by cause and specify multiple columns. Grouping criteria

can be defined at the run time so number of grouping attributes changes at run time. Client calling grouping

needs to know the list of data key on which grouping is possible, also different filter may need to be applied

before create grouping results. To implement it full dynamically, caller needs to know list of keys available

to define grouping criteria and values available for corresponding keys.

This complexity increases when grouping criteria is implemented on keys which are at the children of the

primary data set. E.g. Data Set A has one to many relationships with Data set B and Data set B has one to

many relationships with Data set C, to defined grouping criteria on data set B or Data set C first Data set B

and C needs to be left joined with Data set A. Also, because of joining the table having one to many

relationships, primary key of the Data set A may be repeated only distinct value of primary key should be

returned.

Another challenge is that, grouping value may be needs to be derived can be defined in the range. E.g. In

above example people needs to be grouped in one of the 4 ranges of the age. 1) 0 to 25 2) 26 to 50 3) 51 to

75 4) 76 and above. Another example could be based on state, person needs to be grouped in Northeast,

Midwest, South and West region. This can be implemented by using Case / When expression in SQL.

Below is generic SQL statement that can be used generate the groups.

Select

[Group_Attribute_1,Group_Attribute_2,….Group_Attribute_N],

Case

WhenGroup_Attribute_N1_Condition1thenResult_N1,

WhenGroup_Attribute_N1_Condition2thenResult_N2,

WhenGroup_Attribute_N1_Condition3thenResult_N3,

OtherwiseResult_N4

END AS Group_Attribute_N1,

Count(distinct PK_DATA_SET_A),

Group_concat(distinct PK_DATA_SET_A)

From DATA_SET_A

id first name last-named age gender City state

7 James Anderson 52 Male Denver CO

8 Linda Thomas 39 Female Phoenix AZ

9 Robert Taylor 41 Male Houston TX

10 Olivia Moore 26 Female San Francisco CA

Table 1.1 Sample Person Data

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 3

LEFT Join DATA_SET_B on A_B_FK=A_PK

LEFT Join DATA_SET_C on B_C_FK=B_PK

 …

where[Group_AttributesConditions…]

groupByGroup_Attribute_1,Group_Attribute_2,…..Group_Attribute_N,Group_Attribute_N1

order byGroup_Attribute_1,Group_Attribute_2,…..Group_Attribute_N,Group_Attribute_N1

limit PAGE_SIZE

offset OFFSET_RESULTS

Algorithm

Entire algorithm can be divided into four parts 1) Defining Grouping Criteria. 2) Construct and Execute

Query 3) Construct Response 4) Support pagination and available filters. This algorithm uses Object

Relational Mapping Tool which is commonly used to convert relational data in Object and Criteria builder

API, which allows programmatically construct complex SQL queries.

Defining Grouping Criteria

In this step user of an applications can define grouping criteria to construct the grouping results. In OR tool

each data set is referred as Entity, Entity contains attributes and relation to other entities. So an API needs to

be exposed which will give list of keys on which grouping criteria can be constructed.

[

{

"keyName":"attributeA1",

"dataType":"String"

},

{

"keyName":"attributeA2",

"dataType":"Date"

},

{

"keyName":"attributeA3",

"dataType":"Integer"

},

{

"keyName":"datasetB.attributeB1",

"dataType":"String"

},

{

"keyName":"datasetB.dataSetC.attributeC1",

"dataType":"String"

}

]

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 4

Based on the available keys and imposed systems restrictions, user can create the grouping rules. These

grouping rule will be saved in user’s profile, whenever user logs in and get group, this grouping rule will be

applied to present groups as per the configurations. Also, use can edit and update these rules as needed.

System for Cross-domain Identity Management (SCIM) protocol can be used to define filter rules. There are

open-source libraries to parse SCIM based filter string and construct the Criteria builder API objects. Below

is the example of Grouping Rules represented in JSON format.

{

"groupingRule":[

{

"displayName":"Attribute_1 Display Name",

"filterName":"attribute1"

},

{

"displayName":"Attribute_2 Display Name",

"filterName":"attribute2"

},

{

"displayName":"Attribute_3 Display Name",

"filterName":"attribute3",

"rule":[

{

"when":"attribute3 lt 18",

"then":"less than 18"

},

{

"when":"attribute3 ge 18 and attribute3 le35",

"then":"Between 18 and 35"

},

{

"when":"attribute3 ge 36 and attribute3 le 55",

"then":"Between 36 and 55"

},

{

"when":"attribute3 ge 56",

"then":"56 +"

},

{

"when":"default",

"then":"N/A"

}

]

},

{

"displayName":"Dataset B Att 1 Name",

"filterName":"datasetb.attributeB1"

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 5

},

{

"displayName":"Dataset C Att 1 Name",

"filterName":"datasetc.attributeC1"

}

]

}

Construct And Execute Query

Next whenever user make grouping request, system needs to apply Grouping rules to return grouping

results. Important component of the requests are as follow.

a) groupingFilter – User may want to filter groups on one of the grouping key and values. In above

grouping rules user may need specific groups whose “datasetc.attributeC1” is “VALUE_C1”. There

could be zero or more group filters can be applied. If no groupFilter is provided then default grouping

rule set by the user will be applied.

b) itemFilter – These filters are to filter groups on not Grouping attributes. In other words. User may need

to filter groups based on attributes which are not used for creating the group. In above example, user

may need to get groups which contains at least one item whose “attribute4” is

“ATTRIBUTE_4_VALUE”. Key difference between “groupingFilters” and “itemFilters” are grouping

filters regenerate the groups where as itemFilters just filters out group which does contain any items

matching to itemFilters.

c) pageNumber – This is used for pagination where user can request specific page when many groups are

available.

d) pageSize – Number of results needs to be displayed on the page.

e) includeMetaData – This parameter drives inclusion of meta data information along with grouping

results. E.g. all possible values for grouping filters. By default, this parameter will be false.

f) sortList – This parameter tells to sort results based on grouping attributes.

g) includeTotalResults – This parameter drives inclusion of total results in response.

Below is the sample request.

{

"startIndex":1,

"itemsPerPage":10,

"sortList":["attribute1 asc","attribute2 desc"],

"itemFilter":"attribute4 co VALUE_1",

"groupFilter":"attribute3 eq VALUE_3_1 or VALUE_3_2 eq VALUE_4",

"includeMetaData":false,

"includeTotalResults":true

}

Once user request is received by the backend, backend will merge it with group config rules created by the

user and add additional default system level filtering if required. Then grouping configuration will be sent to

Criteria creation component which will create criteria query, execute the query and send response back.

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 6

1) Create Join Map if any grouping attributes are present on child tables i.e. in our example it will be Join

with Data_Set_B and Data_Set_C. Key to the Map is data set name. e.g. For datasetB.attributeB1 ,

datasetB.datasetC.attributeC1 grouping keys below map will be created.

 datasetB-> dataSetA.join(“datasetB”);

 datasetC-> dataSetA.join(“datasetB).join(“datasetC”);

2) Create List of javax.persistence.criteria.Selection<X>Object based on grouping properties.

3) If Database supports “group_concat” function, then add additional

“javax.persistence.criteria.Selection<X>” object to get concatenated id.

4) Add “javax.persistence.criteria.Selection<X>” object to get number of records groups for given

grouping criteria.

5) Create complex Select objects for derived column using Case statement. Below pseudo code shows how

Select clause can be constructed using criteria building API.

List<Selection<?>> selections =newArrayList<>();

for(String column : columns){

 selections.add(root.get(column));

}

Expression<String> groupConcatExpr = cb.function(

"group_concat", cb.literal("DISTINCT "),String.class, root.get("id")

);

Expression<Long> count = cb.countDistinct(root.get("id");

Expression<String> ageGroup = cb.selectCase()

.when(cb.lessThan(personRoot.get("age"),18),"Under 18")

.when(cb.between(personRoot.get("age"),18,35),"18-35")

.when(cb.between(personRoot.get("age"),36,50),"36-50")

.otherwise("51+");

selections.add(count);

selections.add(groupConcatExpr);

selections.add(ageGroup);

6) Create javax.persistence.criteria.Predicates to construct filters for grouping criteria.

Predicate[] predicates =newPredicate[3];

predicate [0]= cb.in(root.get(filterName1)).value(inputValue1);

predicate [1]= cb.in(root.get(filterName2)).value(inputValue2);

predicate [2]= cb.in(join.get(filterName3)).value(inputValue3);

7) Create groupBy and sort cause for given grouping criteria. Also apply limit and offset for pagination and

execute Query.

Path<String> prop1Path = root.get("prop1");

Path<String> prop2Path = root.get(“prop2");

// Apply GROUP BY

cq.groupBy(prop1Path, prop2Path);

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 7

// Optional: Order results

cq.orderBy(cb.asc(prop1Path), cb.asc(prop2Path));

TypedQuery<Person> query = em.createQuery(cq);

// Apply offset and limit here

query.setFirstResult(offset); // OFFSET

query.setMaxResults(limit); // LIMIT

There are opensource Java based SCIM parser libraries available. Couple of them are a) Apache Syncope

SCIM Filter Parser b) Captain-P-Goldfish SCIM SDK. parse the SCIM based rules and construct abstract

syntax tree (AST) or similar structure. Criteria builder Expression object can be constructed by parsing

each AST node.

Construct Response

Next part is to construct the generic response from the results of the criteria query execution. Result in Json

response can be represented as follow. Tuple can be used to get the result from the query then use column

name (alias name) used in select clause or index to fetch results and construct the response Object. Later

Response object can be serialized in JSON to send it back as the response. Below is the JSON response

from the grouping results.

{

"results":[

{

"count":4,

"ids":["123","345","678","910"],

"groupingFilters":[

{

"displayName":"Attribute_1 Display Name",

"filterName":"attribute1",

"Value":"VALU_1"

},

{

"displayName":"Attribute_2 Display Name",

"filterName":"attribute2",

"value":"VALUE2"

},

{

"displayName":"Attribute_3 Display Name",

"filterName":"attribute3",

"Value":"VALU_3"

},

{

"displayName":"Dataset B Att 1 Name",

"filterName":"datasetb.attributeB1",

"Value":"VALU_4"

},

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 8

{

"displayName":"Dataset C Att 1 Name",

"filterName":"datasetc.attributeC1",

"Value":"VALU_5"

}

]

}

]

}

Support pagination and available filters

To support the pagination, caller need to know total count of the groups available. This can be supported by

adding “totalResults” in response. This can be calculated by executing the same query just for count and

without limit and offset.

Another requirement could be to include meta data. This can be helpful to create grouping filters. This will

be achieved by executing query without limit and offset. The response for all possible values of each

grouping criteria will be constructed by going through the query results. Below is the sample response for

all possible values for grouping criteria.

{

"allGroupingFilters":[

{

"displayName":"Attribute_1 Display Name",

"filterName":"attribute1",

"value":[

{

"value":"VALUE1",

"displayName":"VALUE1",

"count":14

},

{

"value":"VALUE2",

"displayName":"VALUE2",

"count":49

}

]

},

{

"displayName":"Attribute_3 Display Name",

"filterName":"attribute3",

"value":[

{

"value":"attribute3 le 18",

"displayName":"less than 18",

"count":5,

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 9

},

{

"value":"attribute3 gt 55",

"displayName":"55 +",

"count":8,

},

 {

"value":"attribute3 gt 18 and attribute3 le 35",

"displayName":"Between 18 and 35",

"count":8,

}

]

}

]

}

Challenges and Solutions

First challenge is that group_concat() function is not part of the SQL standard, it’s a vendor specific

extension. All databases do not support this function. Challenge is to get list of ids of primary dataset

keeping code database agnostic. There are two possible solutions.

 A) Avoid including list of ids in grouping results, rather have separate API to return list of primary datasets

based on the given grouping criteria.

 B) Second option will be to get database specific function at runtime. From environment variable read the

database name and based on the database name use appropriate SQL function. Below is the list of popular

relational databases and equivalent group concatenation functions.

Second challenge is, conditionally skip grouping on

one of the grouping attributes. E.g. Data_Set_A has attribute

A, B, C then if attribute A has value A1 or A2 then skip grouping on B, also If A has value A3 and B has

value B1 then Skip grouping on C. This conditional exclusion needs to be incorporate in Grouping rule

JSON. Grouping JSON will follow SCIM protocol to define the rule. Below is the sample grouping JSON

will look like.

{

"groupingFilters":[

{

"displayName":"Attribute A",

Supports GROUP_CONCAT () Does Not Support GROUP_CONCAT()

MySQL PostgreSQL (use STRING_AGG)

MariaDB Oracle (use LISTAGG)

SQLite SQL Server (use STRING_AGG)

 DB2 (use LISTAGG)

Table 2- Group Concat method support

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 10

"filterName":"a"

},

{

"displayName":"Attribute B",

"filterName":"b",

"rule":[

{

"when":"a eq A1 or a eq A2",

"then":"null"

},

{

"when":"default",

"then":"b"

}

]

},

{

"displayName":"Attribute C",

"filterName":"c",

"rule":[

{

"when":"a eq A3 and (b eq 'B1' or b eq null)",

"then":"null"

},{

"when":"default",

"then":"c"

}

]}]}

Conditionally skipping grouping can be achieved by using Case-When cause using SQL and Using JPA

criteria builder as follow.

SQL

Select

 A,

 CASE

 WHEN A=’A1’or A=’A2’ THEN null

 OTHERWISE B

 ENDas B,

 CASE

 WHEN A=’A3’and (B=’B1’ or B is null) THEN null

 OTHERWISE C

 ENDas C

From

Data_Set_A

GroupBy

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 11

 A,

 CASE

 WHEN A=’A1’or A=’A2’ THEN null

 OTHERWISE B

 END,

 CASE

 WHEN A=’A3’and B=’B1’ THEN null

 OTHERWISE C

 END

Criteria Builder

Predicate p1 = criteriaBuilder.equal(shipmentRoot.get("a"),"A1");

Predicate p2 = criteriaBuilder.equal(shipmentRoot.get("a"),"A2");

Expression<Object> b = criteriaBuilder.selectCase()

 .when(criteriaBuilder.or(p1,p2), criteriaBuilder.nullLiteral(String.class))

 .otherwise(shipmentRoot.get("b"));

Predicate p3 = criteriaBuilder.equal(shipmentRoot.get("a"),"A3");

Predicate p4 =criteriaBuilder.equal(shipmentRoot.get("b"),"B1");

Predicate p5 = criteriaBuilder.isNull(shipmentRoot.get("b"));

Expression<Object> c = criteriaBuilder.selectCase()

 .when(criteriaBuilder.and(p3,

criteriaBuilder.or(p4,p5)), criteriaBuilder.nullLiteral(String.class))

 .otherwise(shipmentRoot.get("c"));

criteriaQuery.multiselect(shipmentRoot.get("a"), b, c);

criteriaQuery.groupBy(shipmentRoot.get("a"), b, c);

Use Case

One of the leading logistic software service provider company want to give an ability to group their

shipment arriving in united states for custom clearance purpose. User of the software are freight forwarders

or individual importer. One of the largest customers of the software is expecting 5K-10K shipments arriving

to united states per month at different ports. Each customer have their unique business rules for

consolidation, these rules are based on various attributes of the shipments e.g. date of arrival, port of

unlading, importer etc. Also, they want to search for groups for specific shipments or group of shipments.

Above design enabled customers to manage their own grouping rule, view shipments as per the grouping

rules and filter the groups either on grouping attributes or shipment attributes.

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232604 Website: www.ijirmps.org Email: editor@ijirmps.org 12

Conclusion

Below diagram describes the design of an application. As shown in below diagram there are three main API

with which use communicate with the application. A) Get API for filter options. B) Create, Read, Update,

Delete Api for managing Grouping Rules C) Get API for Grouping results. Each component of an

application is loosely coupled, at high level Grouping Api will receive request in Json format, if there are

any user defined grouping rules configured then those will be applied to construct the final grouping rules.

These grouping rules are defined in JSON format, then this JSON is parsed to construct criteria builder API

to get the grouping results.

Fig. 1 High level Design

Reference

[1] P. Hunt, K. Grizzle, M. Ansari, E. Wahlstroem, and C. Mortimore, “RFC 7644: System for Cross-

domain Identity Management: Protocol,” IETF Datatracker, 2015.

https://datatracker.ietf.org/doc/html/rfc7644

[2] M. Keith and Merrick Schincariol, Pro JPA 2 : mastering the Java Persistence API. [Java EE 6

compliant. create robust, data-driven applications with this definitive guide to the new JPA 2]. Berkeley,

Calif.: Apress, 2013.

[3] T. Nield, Getting started with SQL : a hands-on approach for beginners. Sebastopol, Ca: O’reilly, 2016.

[4] Smith, Ben. Beginning JSON. Apress, 2015.

[5] Pezoa, Felipe, et al. "Foundations of JSON schema." Proceedings of the 25th international conference

on World Wide Web. 2016.

https://www.ijirmps.org/

