
Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 1

Comparative Analysis of Distributed Storage

Systems: Architectural Design, Performance, and

Cost Trade-offs in Modern Cloud Environments

Pramath Parashar

Data Science Specialist, BHP Mineral Services

srivatsa.pramath@gmail.com

ORCID: 0009-0000-4902-7958

Abstract

With the exponential growth of data and increasing need for remote access, distributed storage systems

(DSSes) have emerged as a foundational technology for efficient data management and scalability.

Traditional storage models are challenged by the requirements of Internet-based systems, where reliability,

scalability, and cost-efficiency are essential. This study explores the transition from proprietary hardware-

based systems to cloud- based storage solutions and the pressures driving organizations toward Storage as

a Service (STaaS) models. Emphasizing the cost-saving and scalability benefits of using commodity

hardware, this paper examines three open- source distributed storage systems—Tahoe Least-Authority

Filesystem (Tahoe-LAFS), Ceph, and Lustre—each representing a unique architectural approach to data

distribution and management. Our research evaluates these systems based on key metrics, including

scalability, availability, durability, performance, dynamic operation, and cost-effectiveness. Through

analysis and implementation of these DSSes in a networked environment, we aim to understand the design

trade-offs and performance characteristics inherent in each system, providing insights into the best

practices for organizations transitioning to modern, scalable, and resilient storage architectures.

Index Terms: Distributed Storage Systems (DSS), Storage as a Service (STaaS), Cloud Storage, Scalability,

Availability, Performance, Tahoe-LAFS, Ceph, Lustre, Commodity Hardware, Data Durability, Open-

Source Storage, Networked Storage Architecture.

I. PROBLEM DEFINITION

Distributed Storage Systems (DSSes) integrate networking and storage to extend the functionality of traditional

storage solutions. With the rise of Internet-based storage, DSSes face challenges such as network delays,

unreliable communication, and security threats. To address these, modern DSSes leverage commodity hardware

for scalability and cost efficiency, moving away from proprietary solutions that struggle to scale with growing

data demands.

Storage management has shifted from centralized decision-making to a more application-centric ap- proach,

driven by the adoption of cloud and virtualization strategies. However, full migrations remain impractical for

larger organizations, leading to hybrid tiered storage models. Meanwhile, storage capacity continues to grow at

over 20% annually, while utilization rates remain low, typically around 40%. This highlights the need for

improved storage management practices.

These trends create both opportunities and challenges, as new solutions emerge to enhance efficiency, security,

and accessibility. Our project examines and implements three open-source DSSes to explore trade-offs in

designing scalable and cost-effective storage solutions.

II. INTRODUCTION

https://www.ijirmps.org/
mailto:srivatsa.pramath@gmail.com
https://orcid.org/0009-0000-4902-7958
https://orcid.org/0009-0000-4902-7958

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 2

DSSes have evolved from basic remote storage to offering advanced services such as data distribution,

organization, and security. The rapid expansion of network infrastructure has outpaced processor and storage

advancements, driving innovations in DSSes.

Fig. 1: The Tahoe topology [1]

Cloud computing has accelerated the shift from server-linked to distributed storage, offering cost reductions but

raising security concerns, especially with Storage-as-a-Service (STaaS). While STaaS benefits small to mid-sized

businesses, larger organizations retain hybrid storage models due to contractual obligations.

Emerging trends include thin provisioning, which optimizes storage allocation and power consumption, and

automated tiering, which assigns data based on usage patterns. As data storage needs grow with Web 3.0

and semi-structured data, DSSes must address challenges like scalability, fault tolerance, and consistency. This

paper explores current DSS solutions, highlighting key trade-offs shaping the future of storage.

III. RELATED WORK

Appropriated capacity research, beginning during the 1980s, has developed from fundamental issues to cutting

edge points like distributed frameworks, information lattices, and difficulties in directing, consistency, security,

and league. Late examinations analyze replication and eradication codes in enormous scope P2P frameworks,

with [3] showing that deletion codes lessen data transmission yet add intricacy.

Frameworks like NFS, Coda, and Ivy support unpredictable distribute/share highlights, while execution driven

DSSs like PVFS [4], Shine [5], and GPFS [6] take care of I/O-escalated applications.

Custom frameworks like GFS [7] and OceanStore [8], [9] address explicit requirements involving P2P for

adaptability. Freeloader [10] enhances data transmission through capacity searching.

We next investigate the structures of Tahoe-LAFS [11], Ceph [12], and Gloss [5], featuring decentralized,

adaptable methodologies.

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 3

Fig. 2: The Ceph Topology [2]

IV. BACKGROUND

We evaluated three distributed storage systems—Tahoe, Ceph, and Lustre—based on scalability, avail- ability,

durability, performance, and cost-efficiency.

A. Tahoe

Tahoe is an open-source, peer-to-peer file system using encryption and erasure coding for data integrity. It

employs a capability-based access model with immutable (read-only) and mutable (read-write) files. Directories

enable hierarchical access control, and revocation is done by copying data to a new location.

1) Architecture: Tahoe consists of: 1. A Distributed Hash Table (DHT) for encrypted storage. 2. A Virtual

Drive for structured data organization. 3. RESTful and local filesystem interfaces.

While reliable, Tahoe relies on a central introducer node and lacks data location control, making it ideal for

local but not wide-area networks.

B. Ceph

Ceph is a scalable, high-performance DSS eliminating single points of failure. It includes: - Clients with a

POSIX-like API. - Object Storage Daemons (OSDs) for data management. - Metadata Servers (MDSs) for

namespace consistency.

1) Architecture: Ceph separates metadata and data, using the CRUSH algorithm for replication. Storage is

unified under RADOS with automated failure recovery. Though highly scalable, Ceph faces challenges in WAN

deployments due to network variability.

C. Lustre

Lustre, used in high-performance computing, separates metadata and data, utilizing: - Metadata Servers (MDSs)

for namespace management. - Object Storage Servers (OSSs) storing data across Object Storage Targets (OSTs).

1) Architecture: Lustre enables parallel file access by striping data across OSTs. It supports high-

performance tuning but suffers from metadata bottlenecks and lacks built-in replication, limiting its use in

large-scale distributed environments.

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 4

TABLE I: System Comparison

Attribute Tahoe Ceph Lustre

License GNU GPL GNU LGPL GNU GPL

Data Primitive object (file) object (file) object (file)

Data Placement random placement groups, pseudo-

random mapping

based on round robin and

free space heuristics

Metadata Handling flat multiple metadata servers max of two metadata servers

Storage Tiers none through CRUSH rules pools of object storage tar-

gets

Failure Handling assuming unreliable nodes assuming unreliable nodes assuming reliable nodes

Replication server side server side server side

WAN Deployment numerous no known deployment TeraGrid (scientific data)

Client Interfacing The API exposes standard

GET, PUT, POST, and

DELETE methods, supports

JSON and HTML output

native client file system,

FUSE

native client file system,

FUSE, clients may export

NFS, CIFS

Node Types client/server, an introducer,

a key generator

client, metadata, object client, metadata, object

TABLE II: Tahoe Testbed Machines

Name CPU Memory HD OS

xpc1 Intel P4 3.00 GHz 2×512MB DDR400 DiamondMax10 160GB SATA Ubuntu 11.10 x64

xpc2 Intel Celeron D 2.93 GHz 1×1GB DDR400 DiamondMax10 160GB SATA Ubuntu 11.10 x64

xpc3 AMD Sempron 3000+ 2×512MB DDR400 DiamondMax10 160GB SATA Ubuntu 11.10 x64

V. TEST SETUP

Circulated capacity frameworks might work on committed machines or client workstations, confronting

difficulties from changing circumstances like organization execution, machine network, and information access

recurrence. These frameworks’ presentation and asset use rely upon arrangement boundaries and dynamic

circumstances.

Execution is commonly estimated by information recovery/capacity time, with network assets frequently being

the bottleneck. The arrangement of the information recovery system, especially the level of simul- taneousness,

influences execution. A low simultaneousness degree can prompt high variety in recovery times, while a high

simultaneousness degree can cause network bottlenecks. Changing simultaneousness in light of these elements

enhances both execution and asset utilization.

Given the powerful idea of these frameworks, programmed design changes are liked over static settings. The

accompanying subsections depict the underlying test arrangement and setup for the frameworks being assessed,

barring ensuing boundary changes.

A. Tahoe Test Environment

The Tahoe test environment consist of three micro-ATX PCs. Their characteristics are available in Table II. Each

machine is running the latest desktop version of Ubuntu 11.10 as of the time of this writing (Early April, 2012).

Each machine has an identical 160GB SATA 3.0 Gb/s hard disk partitioned in the following manner using an

MBR partition table:

• sdX1 - 1 GB - primary - Swap partition

• sdX2 - 60 GB - primary - ext4 OS partition

• sdX3 - 100 GB - Extended partition table for LBA partitions

• sdX5 - 30 GB - logical - ext4 - Tahoe Data partition

• sdX6 - 30 GB - logical - TBD - Unused

• sdX7 - 30 GB - logical - ext4 - Unused

The figure shows our testbed setup. All machines are connected to each other via a 10/100 IPv4 Ethernet network

connected to a Cisco Linksys WRT110 Switch. The network is local and shared only by the three

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 5

Fig. 3: Tahoe Testbed Setup

test machines and the switch. The switch also acts as a router, gateway and firewall, regulating traffic to and

from the Internet. The machines use static IP addresses:

• xpc1 - 192.168.1.10

• xpc2 - 192.168.1.11

• xpc3 - 192.168.1.12

• Switch - 192.168.1.1

When running tests, we attempted to insure that each machine was performing no extra work other than the

work required to run the benchmark and the backing file system under test. We also attempted to separate the

behavior and performance of the various file systems under test to avoid cross-effects between the systems. Thus,

only one file system was tested at a time, and all other file system were isolated to their own partition and

shutdown while these tests were occurring.

XPC1 is serves as both a Tahoe Introducer, and a Tahoe data node. XPC2 and XPC3 serve only as headless data

nodes. XPC1 also serves hosts our primary interface to the Tahoe system: the Fuse SSHFS filesystem. This system

provides a POSIX VFS compatible mount point into teh Tahoe system, allowing us to run tests as though it

were a standard Unix filesystem.

B. Ceph and Lustre Test Environment

The Lustre/Ceph tests were conducted in a separate test environment from Tahoe due to the need for very specific

resources.The objective in the evaluation was to evaluate a few straightforward use cases in a wide area setup

with a limited number of nodes. We realize that a limited test environment as used here is not capable of

supporting a broad number of scenarios and limits the conclusions that can be drawn particularly with respect to

performance behavior across a more industrial strength implementation as well as related issues like fault

tolerance; such a test would require a very large setup and considerably more resources to execute than we could

secure for this project. Notwithstanding that fact, the test environment is briefly described below.

The experimental evaluation of our system was conducted in a cluster of 14 identical PCs with dual core CPUs

running at 1:2 GHz, 1 GB RAM, 1 HDD spinning at 7200 rpm and 1 Gbps Ethernet cards. All PCs were directly

connected to a Gigabit Ethernet switch (HP ProCurve 1810g). The bandwidth measure- ment benchmarks

conducted in the evaluation environment using netperf indicate a maximum data rate between two PCs (full-

duplex) of about 800 Mbps. For the Ceph system tests, we used the Ubuntu 10:04 distribution. For Lustre tests

we used Ubuntu 8:10 with the patched kernel provided at the Lustre website.

C. Tahoe - Establishment and Configuration

We set up the Tahoe LAFS on three Ubuntu 11.10 PCs with a parcel mounted at/Tahoe.

XPC1192.168.1.10

Switch192.168.1.1

XPC3192.168.1.12 XPC2192.168.1.11

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 6

Lustre Modification

Design Problem and Challenges

This module is a modification to Lustre to address issues that exist with the file system’s metadata server (MDS). Currently the file system provides only a standby

architecture for the MDS. The current approach exposes the system to a single point of failure as it only uses one shared disk for its two MDSs. The intent of the

module is to implement a process that replicates the MDS on several nodes, thus providing a higher degree of MDS availability. Note that baseline Lustre provides no

replication capability, which is a severe weakness in its architectural design.

Some direction to how this architectural change might be effected can be found by borrowing from the symmetric active/active architecture for the MDS of PVFS

which provides some design guidance for a similar type issue. In that instance an internal replication of the MDS was implemented with the use of Transis as a group

communication facility. In Lustre one can get similar results by isolating the MDS from the other system components and then replicating the MDS. The MDS

replication can be done either externally or internally. A detailed discussion of the pros and cons of each is available at the Lustre wiki.

For a number of reasons we chose to replicate externally. This approach constructs the group communication system like a wrapper around the MDS. The group

communication system is placed into the Client-MDS communication path as an intermediate communication process. This process intercepts the network calls to and

from the MDS and distributes the TCP packages to the group communication facility. The obvious benefit of this approach is that there is no need to touch the MDS

code. Conversely, this approach will more than likely result in higher latency time due to the added overhead of inter-process communication. Additionally, the exact

communication protocol and format between the MDS and the client must be known. This is an issue since the Lustre code manuals and wiki are uncharacteristically

silent on this issue.

Finally, this modification requires a slight reconfiguration of Lustre from the baseline configuration approach. In this modified configuration, Lustre and the network

components are configured in a single XML file. In this way the file system

assumes that every node in the file system uses the same XML file for the configuration and startup. However, there appears to be no significant issue in utilizing

different XML files for separate nodes. A detailed discussion of the reconfiguration process is not provided here due to space limitations.

Another critical issue in this redesign that needs to be addressed is the single instance execution problem. Since MDS members operate in synchrony each MDS has to

generate the same output. The group communication software needs to be

Fig. 4: The Lustre topology [13]

1) Download the most recent Tahoe LAFS variant (e.g., 1.9.1) from [1] and remove it on every PC.

2) Guarantee Python 2.7.2 is introduced (expected for Tahoe LAFS 2.4.4 or higher) [14].

3) Assemble Tahoe LAFS utilizing the order:

python setup.py assemble

4) Pick a PC (XPC1) to be the speaker because of better execution. Set up subdirectories for speaker and

client on XPC1.
5) Make the speaker hub utilizing:
tahoe make speaker - - hub directory=/tahoe/speaker

Alter the tahoe.cfg to design the moniker, web port, and offers.
6) Start the speaker with:
tahoe start - - hub directory=/tahoe/speaker/

7) On the client hubs (XPC2 and XPC3), make hubs with:
tahoe make hub - - hub directory=/tahoe/

On XPC1, make the client hub:
tahoe make hub - - hub directory=/tahoe/client/

8) Duplicate the speaker Roll into the clients’ tahoe.cfg document and arrange the moniker and offers.

9) Start the client hubs with: tahoe start/tahoe/ On XPC1, use:

tahoe start/tahoe/client/

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 7

We confirmed the arrangement by getting to the web interface at 127.0.0.1:3457 on XPC1 and

transferring/downloading documents from the client interface at 127.0.0.1:3456. We affirmed that all hubs

were associated and working accurately.
For testing comfort, we composed contents to remotely begin/stop the hubs properly aligned, are given in

Supplement.

VI. CEPH - ESTABLISHMENT AND CONFIGURATION

Ceph prescribes btrfs for capacity because of its versatility and exchange support. The principal arrangement

record /and so on/ceph/ceph.conf is shared across hubs. It upholds both btrfs and ext4, with

ext4 requiring extraordinary mounting choices. SSH keys should be set up for remote access. Ceph utilizes a

piece driver or wire to mount and deal with full OSDs by rebalancing or expanding edges. Backup replay mode
recuperates MDS disappointments by storing metadata.

VII. LUSTRE - ESTABLISHMENT AND CONFIGURATION

Radiance requires Linux bit 2.6.16+ and a fixed portion for MDS, MGS, or OSS. LNET organizing and MGS

setup are fundamental. OSTs are made with an order and should indicate the MGS IP address. After establishment,

Gloss is mounted and gotten to by clients, with discretionary high accessibility arrangements like Assault and
failover.

VIII. EVALUATION

The quick advancement of capacity innovation is thwarted by the absence of comparing estimation devices. The

shortfall of normalized assessment strategies and deficient measurements from capacity sellers makes it hard for

clients to choose the right items, prompting terrible showing and squandered speculations. Slow capacity

execution brings about longer question times and unfortunate client encounters, while wasteful utilization of quick

stockpiling prompts pointless spending.

Execution testing for circulated capacity frameworks is mind boggling, impacted by variables, for example, block

size, document size, line profundity, read/compose proportion, circle speed, reserve size, Attack level, and

capacity convention. Thusly, a solitary benchmark is deficient, and various benchmarks are required for precise

and solid testing.

The testing stage plans to assess the tradeoffs in framework plan and what these decisions mean for execution.

The Linux test stage surveys document framework I/O execution (total transmission capacity, simultaneous

access, and metadata throughput) and circle exhibit I/O execution (IOPS, DTR), with adaptable boundaries,

for example, record size, block size, line profundity, and read/compose proportions. The testing system

incorporates choosing benchmarks, arranging boundaries, picking the objective circulated document

framework and test hubs, running the tests, showing results, and creating reports.

Test results and designs are put away in a data set for simple correlation.

To oversee and screen tests, the stage should uphold dynamic expansion/evacuation of test hubs, guaranteeing

versatility and effective errand the board.

A. Tahoe Tests

We assessed the Tahoe framework’s throughput and idleness utilizing the Unix dd utility, with timing from GNU

time, date, and Tahoe’s inherent instrumentation. Tests included record sizes from 1 MiB to 3 GiB and both

irregular (/dev/urandom) and zero-filled (/dev/zero) information. We estimated read and compose

throughput, and compose dormancy.
For read and compose throughput, we utilized:

date; dd if=<Tahoe File> of=/dev/invalid bs=1024; date; date; dd

if=/dev/urandom of=

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 8

<Tahoe File> bs=1024 count=<size>; date;

Compose idleness was determined from the time between the fruition of the dd compose and record

accessibility in Tahoe.

B. Ceph and Gloss Tests

We evaluated the I/O execution of Ceph and Brilliance utilizing the IOzone device with consecutive and arbitrary

access designs. Frameworks had 13 capacity hubs, one metadata server, and one client, with a 1 MB block size.
We likewise tried versatility with synchronized clients utilizing the xdd instrument, and assessed replication

execution. Ceph and Tahoe support replication, with Ceph’s bigger stripe size affecting execution.

IX. RESULTS

Here we discuss the relevant results from each of our three tests systems.

A. Tahoe Results

The full set of Tahoe read and write results are available. We present an illustrative subset of the results here.

Table III shows write throughput speeds for files composed of random data. The average end-to-end write

throughput using random data is 0.52 MiB/s.

TABLE III: Tahoe random Write Throughput by File Size

Data Size Base Overhead End-to-End

random 1 MiB 1.02 MiB/s 1.00 MiB/s 0.51 MiB/s

random 10 MiB 0.99 MiB/s 1.11 MiB/s 0.53 MiB/s

random 100 MiB 0.98 MiB/s 1.39 MiB/s 0.57 MiB/s

random 1 GiB 1.05 MiB/s 1.48 MiB/s 0.61 MiB/s

random 2 GiB 1.03 MiB/s 1.49 MiB/s 0.61 MiB/s

random 3 GiB 1.03 MiB/s 0.41 MiB/s 0.29 MiB/s

Table IV shows write throughput speeds for files composed of zeros data. The average end-to-end write

throughput using zeros data is 0.69 MiB/s.

TABLE IV: Tahoe zeros Write Throughput by File Size

Data Size Base Overhead End-to-End

zeros 1 MiB 1.11 MiB/s 1.00 MiB/s 0.50 MiB/s

zeros 10 MiB 1.20 MiB/s 1.43 MiB/s 0.63 MiB/s

zeros 100 MiB 1.15 MiB/s 1.35 MiB/s 0.62 MiB/s

zeros 1 GiB 1.17 MiB/s 7.64 MiB/s 1.01 MiB/s

zeros 2 GiB 1.15 MiB/s 7.56 MiB/s 0.99 MiB/s

zeros 3 GiB 1.15 MiB/s 0.65 MiB/s 0.41 MiB/s

As we can see from the write data, it appears that Tahoe’s compression capabilities are kicking on for the larger

’zeros’ files. Random files are not generally compressible, so no such effect is seen there. Files exceeding 2 GiB

also seem to suffer a significant performance hit. This may be due to limits imposed by the amount of RAM

available on our test machines. The large files may be forcing the SSHFS system to use a lot of swap-space

since each machine was only equipped with 1GB of RAM, leading to a performance crash above a certain file

size.

Table V shows read throughput speeds for files composed of random data. The average read throughput using

random data is 1.32 MiB/s.

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 9

TABLE V: Tahoe random Read Throughput by File Size

Data Size Base

random 1 MiB 1.54 MiB/s

random 10 MiB 1.32 MiB/s

random 100 MiB 1.11 MiB/s

TABLE VI: Tahoe zeros Read Throughput by File Size

Data Size Base

zeros 1 MiB 1.61 MiB/s

zeros 10 MiB 1.53 MiB/s

zeros 100 MiB 1.13 MiB/s

Table VI shows read throughput speeds for files composed of zeros data. The average read throughput using zeros

data is 1.42 MiB/s.

Tahoe read throughput tends to be about twice that of write throughput. This is likely due to a combination of

the fact that Tahoe must propagate write changes across the network, as well as the fact that the SSHFS

interface must cache the file before uploading it. No read data was collected for files larger than 100 MiB. The

system became unstable when we attempted to read files of this size. Again, this may be a limitation of the

system RAM size and the SSHFS interface.

X. CEPH AND SHINE RESULTS SUMMARY

Figures show performance across nonconcurrent I/O workloads for Lustre256, Lustre0, and Ceph. As file sizes

grow, throughput stabilizes due to reduced caching. Lustre0 outperforms Ceph and Lustre256 in sequential

writes but is limited by network bandwidth (95 MB/s). Ceph excels in larger file stripes but incurs higher file

operation costs.

For concurrent writes, Lustre scales up to 300 MB/s, while Ceph peaks at 180 MB/s. Sequential reads and writes

remain stable at larger request sizes, reaching 330 MB/s for reads. Ceph saturates uplinks during asynchronous

writes, while Tahoe performs better in direct writes but degrades with additional replicas.

XI. GENERAL CONCLUSIONS

Traditional DFS solutions (e.g., Lustre, HDFS) rely on a single metadata server, limiting scalability. Newer

systems like Ceph distribute metadata but neglect network traffic optimization. Future DFS should minimize

inter-server communication, leverage on-demand data retrieval, and reassess data redundancy strategies. A

topology-aware striping mechanism could enhance performance in multi-application envi- ronments.

A. System-Specific Conclusions

Tahoe: Secure against untrusted storage nodes through encryption but suffers from slow writes, making it suitable

for archival storage.

Ceph: Scalable with dynamic metadata distribution and replication but hindered by immaturity, limited

documentation, and WAN performance concerns.

Lustre: Highly performant in HPC environments but bottlenecked by a single metadata server and lacks

native replication.

B. Comparison

Table VII provides a side-by-side comparison of the three systems. Tahoe is best for untrusted envi- ronments,

Lustre for HPC workloads, and Ceph for a modern POSIX-compliant storage system. Tahoe’s encryption

overhead impacts performance, while Ceph and Lustre achieve higher throughput.

https://www.ijirmps.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 10

TABLE VII: Comparison of Distributed Storage Systems

Feature Tahoe Lustre Ceph

Throughput Low High High

Latency High Low Low

Fault

Tolerance

User-

defined

Failover Replication

Security High Moderate High

Installation Dist. Dist. Dist.

Management Dist. Dist. Dist.

Compatibility Multi-OS Linux Linux

Data

Placement

Random Heuristics Groups

Storage Tiers None OSTs CRUSH

Maintained Yes Yes Yes

Development Yes Yes Yes

XII. FUTURE WORK

Scaling tests across multiple geographically distributed sites would provide better insights into real-world WAN

performance. Future experiments should incorporate diverse hardware setups (SSD, SAS, RAID) and network

technologies (Ethernet, InfiniBand). Enhancements could include a native FUSE interface for Tahoe, improved

metadata redundancy in Lustre, and streamlined deployment tools for Ceph.

REFERENCES

[1] T.-L. Team”, “”tahoe-lafs website”,” http://www.tahoe-lafs.org, 2012.

[2] J. B. Laton”, “”ceph: The distributed file system creature from the object lagoon”,” 2010.

[3] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication: A quantitative comparison,” Revised

Papers from the 1st Intl. Workshop on Peer-to-Peer Systems, vol. 2429, pp. 328–337, Dec 2002.

[4] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, “Pvfs: A parallel file system for linux clusters,” Extreme

Linux Workshop, 2000.

[5] P. Braam, “Lustre white paper,” 2005.

[6] F. R. H. Schmuck, “Gpfs: A shared-disk file system for large computing clusters,” Proceedings of the FAST’02

Conference on File and Storage Technologies, Jan 2002.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” ACM SIGOPS Operating Systems Review,

vol. 37, no. 5, pp. 29–43, 2003.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An architecture for global-scale persistent storage,” Proceedings of the

Ninth international Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS

2000), Nov 2000.

[9] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz, “Pond: the oceanstore prototype,”

Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST ’03), Mar 2003.

[10] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tammineedi, and S. Scott, “Freeloader:scavenging desktop storage

resources for scientific data,” Proceedings of Supercomputing 2005 (SC’05), 2005.

[11] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority filesystem,” Proceedings of the 4th ACM

international workshop on Storage security and survivability, pp. 21–26, 2008.

[12] S. A. Weil, “Ceph: Reliable, scalable, and high-performance distributed storage,” Dissertation, 2007. [Online].

Available: http://ceph.newdream.net/weil-thesis.pdf

[13] ”http://lxhzju.blog.163.com/”, “”lustre file system”,”

http://lxhzju.blog.163.com/blog/static/45008200610216496289/, 2006.

[14] P. D. Team”, “”python website”,” http://www.python.org, 2012.

[15] A. Fox, “Above the clouds: A berkeley view of cloud computing,” Dept. Electrical Eng. and Comput. Sciences,

University of California, Berkeley, Rep. UCB/EECS, vol. 28, 2009.

[16] C. Kang, “A distributed storage schema for cloud computing based raster gis systems,” pp. 1–19, May 2011.

[17] B. Trushkowsky, P. Bodık, A. Fox, M. Franklin, M. Jordan, and D. Patterson, “The scads director: Scaling a

https://www.ijirmps.org/
http://www.tahoe-lafs.org/
http://ceph.newdream.net/weil-thesis.pdf
http://lxhzju.blog.163.com/
http://lxhzju.blog.163.com/blog/static/45008200610216496289/
http://www.python.org/

Volume 13 Issue 3 @ May - June 2025 IJIRMPS | ISSN: 2349-7300

IJIRMPS2503232624 Website: www.ijirmps.org Email: editor@ijirmps.org 11

distributed storage system under stringent performance requirements,” USENIX Conf on File and Storage Technologies,

pp. 163–176, 2011.

[18] C. Maltzahn, E. Molina-Estolano, A. Khurana, A. Nelson, S. Brandt, and S. Weil, “Ceph as a

scalable alternative to the hadoop distributed file system,” USENIX; login, vol. 35, no. 4, pp. 38–49, 2010.

[Online]. Available: http:

//www.usenix.org/publications/login/2010-08/openpdfs/maltzahn.pdf

[19] J. Feng, Y. Chen, and P. Liu, “Bridging the missing link of cloud data storage security in aws,” pp. 1–2, Oct 2009.

[20] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, “Ceph: A scalable, high-performance distributed file

system,” Proceedings of the 7th symposium on Operating systems design and implementation, pp. 307–320, 2006.

[21] Q. He, Z. Li, and X. Zhang, “Study on cloud storage system based on distributed storage systems,” pp. 1332–

1335, Dec 2010.

[22] K. Liu, J. Zhou, L. Qin, and N. Lv, “A novel computing-enhanced cloud storage model supporting combined

service aware,” pp. 275–280, Jul 2010.

[23] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing systems,” pp. 44–51, Aug 2009.

[24] C. Wang, Q. Wang, K. Ren, and W. Lou, “Towards secure and dependable storage services in cloud computing,”

Services Computing, IEEE Transactions on, no. 99, pp. 1–1, 2011.

[25] Y. Han, “Cloud computing: Case studies and total cost of ownership,” Information Technology and Libraries,

Jan 2011. [Online].

Available: http://ejournals.bc.edu/ojs/index.php/ital/article/view/1871

[26] U. Divakarla. . . , “An overview of cloud computing in distributed systems,” American Institute of Physics . . . ,

Jan 2010. [Online].

Available: http://adsabs.harvard.edu/abs/2010AIPC.1324..184D

[27] A. Marinos and G. Briscoe, “Community cloud computing,” Cloud Computing, pp. 472–484, 2009.

[28] L. Wang, J. Tao, M. Kunze, D. Rattu, and A. Castellanos, “The cumulus project: Build a scientific cloud for a

data center,” Cloud Computing and its Applications, 2008.

[29] J. Hansen and E. Jul, “Lithium: virtual machine storage for the cloud,” Proceedings of the 1st ACM symposium

on Cloud computing,

pp. 15–26, 2010.

[30] S. Smaldone, C. Tonde, L. Iftode, V. K. Ananthanarayanan, and A. Elgammal, “The cyber-physical bike: A step

towards safer green transportation.” [Online]. Available: http://www.research.rutgers.edu/∼smaldone/pubs/cyberbike-

hotmobile11.pdf

[31] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,

“Bigtable,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 1–26, Jun 2008.

[32] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications of the ACM.

[Online]. Available: http://dl.acm.org/citation.cfm?id=359563

[33] C. Hsu¹, C. Wang, and S. Shieh, “Reliability and security of large scale data storage in cloud computing.”

[34] H. Chihoub, G. Antoniu, and M. S. Perez, “Towards a scalable, fault-tolerant, self-adaptive storage for the clouds,”

2011.

[35] R. Hegarty, M. Merabti, Q. Shi, and B. Askwith, “Forensic analysis of distributed data in a service oriented

computing platform,” PG Net The 10th Annual Postgraduate Symposium on The Convergence of Telecommunications,

Networking & Broadcasting, Liverpool John Moores University, 2009.

[36] T. B. Winans and J. S. Brown, “Cloud computing a collection of working papers,” pp. 1–33, Jul 2009.

[37] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of distributed systems.”

[Online]. Available: http://dl.acm.org/citation.cfm?id=214456

[38] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security in cloud computing,” Quality of Service,

2009. IWQoS. 17th International Workshop on, pp. 1–9, 2009.

[39] H. Yoon, M. Ravichandran, A. Gavrilovska, and K. Schwan, “Distributed cloud storage services with flecs

containers.”

[40] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, “Ivy: A read/write peer-to-peer file system,” 5th OSDI, 2002.

https://www.ijirmps.org/
http://www.usenix.org/publications/login/2010-08/openpdfs/maltzahn.pdf
http://www.usenix.org/publications/login/2010-08/openpdfs/maltzahn.pdf
http://ejournals.bc.edu/ojs/index.php/ital/article/view/1871
http://adsabs.harvard.edu/abs/2010AIPC.1324..184D
http://www.research.rutgers.edu/~smaldone/pubs/cyberbike-hotmobile11.pdf
http://www.research.rutgers.edu/~smaldone/pubs/cyberbike-hotmobile11.pdf
http://dl.acm.org/citation.cfm?id=359563
http://dl.acm.org/citation.cfm?id=214456

