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Abstract 

With the exponential growth of data and increasing need for remote access, distributed storage systems 

(DSSes) have emerged as a foundational technology for efficient data management and scalability. 

Traditional storage models are challenged by the requirements of Internet-based systems, where reliability, 

scalability, and cost-efficiency are essential. This study explores the transition from proprietary hardware-

based systems to cloud- based storage solutions and the pressures driving organizations toward Storage as 

a Service (STaaS) models. Emphasizing the cost-saving and scalability benefits of using commodity 

hardware, this paper examines three open- source distributed storage systems—Tahoe Least-Authority 

Filesystem (Tahoe-LAFS), Ceph, and Lustre—each representing a unique architectural approach to data 

distribution and management. Our research evaluates these systems based on key metrics, including 

scalability, availability, durability, performance, dynamic operation, and cost-effectiveness. Through 

analysis and implementation of these DSSes in a networked environment, we aim to understand the design 

trade-offs and performance characteristics inherent in each system, providing insights into the best 

practices for organizations transitioning to modern, scalable, and resilient storage architectures. 

 

Index Terms: Distributed Storage Systems (DSS), Storage as a Service (STaaS), Cloud Storage, Scalability, 

Availability, Performance, Tahoe-LAFS, Ceph, Lustre, Commodity Hardware, Data Durability, Open-

Source Storage, Networked Storage Architecture. 

 

I. PROBLEM DEFINITION 

Distributed Storage Systems (DSSes) integrate networking and storage to extend the functionality of traditional 

storage solutions. With the rise of Internet-based storage, DSSes face challenges such as network delays, 

unreliable communication, and security threats. To address these, modern DSSes leverage commodity hardware 

for scalability and cost efficiency, moving away from proprietary solutions that struggle to scale with growing 

data demands. 

Storage management has shifted from centralized decision-making to a more application-centric ap- proach, 

driven by the adoption of cloud and virtualization strategies. However, full migrations remain impractical for 

larger organizations, leading to hybrid tiered storage models. Meanwhile, storage capacity continues to grow at 

over 20% annually, while utilization rates remain low, typically around 40%. This highlights the need for 

improved storage management practices. 

These trends create both opportunities and challenges, as new solutions emerge to enhance efficiency, security, 

and accessibility. Our project examines and implements three open-source DSSes to explore trade-offs in 

designing scalable and cost-effective storage solutions. 

 

II. INTRODUCTION 
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DSSes have evolved from basic remote storage to offering advanced services such as data distribution, 

organization, and security. The rapid expansion of network infrastructure has outpaced processor and storage 

advancements, driving innovations in DSSes. 

 

 

Fig. 1: The Tahoe topology [1] 

Cloud computing has accelerated the shift from server-linked to distributed storage, offering cost reductions but 

raising security concerns, especially with Storage-as-a-Service (STaaS). While STaaS benefits small to mid-sized 

businesses, larger organizations retain hybrid storage models due to contractual obligations. 

Emerging trends include thin provisioning, which optimizes storage allocation and power consumption, and 

automated tiering, which assigns data based on usage patterns. As data storage needs grow with Web 3.0 

and semi-structured data, DSSes must address challenges like scalability, fault tolerance, and consistency. This 

paper explores current DSS solutions, highlighting key trade-offs shaping the future of storage. 

 

III. RELATED WORK 

Appropriated capacity research, beginning during the 1980s, has developed from fundamental issues to cutting 

edge points like distributed frameworks, information lattices, and difficulties in directing, consistency, security, 

and league. Late examinations analyze replication and eradication codes in enormous scope P2P frameworks, 

with [3] showing that deletion codes lessen data transmission yet add intricacy. 

Frameworks like NFS, Coda, and Ivy support unpredictable distribute/share highlights, while execution driven 

DSSs like PVFS [4], Shine [5], and GPFS [6] take care of I/O-escalated applications. 

Custom frameworks like GFS [7] and OceanStore [8], [9] address explicit requirements involving P2P for 

adaptability. Freeloader [10] enhances data transmission through capacity searching. 

We next investigate the structures of Tahoe-LAFS [11], Ceph [12], and Gloss [5], featuring decentralized, 

adaptable methodologies. 
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Fig. 2: The Ceph Topology [2] 

 

IV. BACKGROUND 

We evaluated three distributed storage systems—Tahoe, Ceph, and Lustre—based on scalability, avail- ability, 

durability, performance, and cost-efficiency. 

 

A. Tahoe 

Tahoe is an open-source, peer-to-peer file system using encryption and erasure coding for data integrity. It 

employs a capability-based access model with immutable (read-only) and mutable (read-write) files. Directories 

enable hierarchical access control, and revocation is done by copying data to a new location. 

1) Architecture: Tahoe consists of: 1. A Distributed Hash Table (DHT) for encrypted storage. 2. A Virtual 

Drive for structured data organization. 3. RESTful and local filesystem interfaces. 

While reliable, Tahoe relies on a central introducer node and lacks data location control, making it ideal for 

local but not wide-area networks. 

 

B. Ceph 

Ceph is a scalable, high-performance DSS eliminating single points of failure. It includes: - Clients with a 

POSIX-like API. - Object Storage Daemons (OSDs) for data management. - Metadata Servers (MDSs) for 

namespace consistency. 

1) Architecture: Ceph separates metadata and data, using the CRUSH algorithm for replication. Storage is 

unified under RADOS with automated failure recovery. Though highly scalable, Ceph faces challenges in WAN 

deployments due to network variability. 

 

C. Lustre 

Lustre, used in high-performance computing, separates metadata and data, utilizing: - Metadata Servers (MDSs) 

for namespace management. - Object Storage Servers (OSSs) storing data across Object Storage Targets (OSTs). 

1) Architecture: Lustre enables parallel file access by striping data across OSTs. It supports high- 

performance tuning but suffers from metadata bottlenecks and lacks built-in replication, limiting its use in 

large-scale distributed environments. 
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TABLE I: System Comparison 
 

Attribute Tahoe Ceph Lustre 

License GNU GPL GNU LGPL GNU GPL 

Data Primitive object (file) object (file) object (file) 

Data Placement random placement groups, pseudo- 

random mapping 

based on round robin and 

free space heuristics 

Metadata Handling flat multiple metadata servers max of two metadata servers 

Storage Tiers none through CRUSH rules pools of object storage tar- 

gets 

Failure Handling assuming unreliable nodes assuming unreliable nodes assuming reliable nodes 

Replication server side server side server side 

WAN Deployment numerous no known deployment TeraGrid (scientific data) 

Client Interfacing The API exposes standard 

GET,  PUT,  POST,  and 

DELETE methods, supports 

JSON and HTML output 

native client file system, 

FUSE 

native client file system, 

FUSE, clients may export 

NFS, CIFS 

Node Types client/server, an introducer, 

a key generator 

client, metadata, object client, metadata, object 

TABLE II: Tahoe Testbed Machines 
 

Name CPU Memory HD OS 

xpc1 Intel P4 3.00 GHz 2×512MB DDR400 DiamondMax10 160GB SATA Ubuntu 11.10 x64 

xpc2 Intel Celeron D 2.93 GHz 1×1GB DDR400 DiamondMax10 160GB SATA Ubuntu 11.10 x64 

xpc3 AMD Sempron 3000+ 2×512MB DDR400 DiamondMax10 160GB SATA Ubuntu 11.10 x64 

 

V. TEST SETUP 

Circulated capacity frameworks might work on committed machines or client workstations, confronting 

difficulties from changing circumstances like organization execution, machine network, and information access 

recurrence. These frameworks’ presentation and asset use rely upon arrangement boundaries and dynamic 

circumstances. 

Execution is commonly estimated by information recovery/capacity time, with network assets frequently being 

the bottleneck. The arrangement of the information recovery system, especially the level of simul- taneousness, 

influences execution. A low simultaneousness degree can prompt high variety in recovery times, while a high 

simultaneousness degree can cause network bottlenecks. Changing simultaneousness in light of these elements 

enhances both execution and asset utilization. 

Given the powerful idea of these frameworks, programmed design changes are liked over static settings. The 

accompanying subsections depict the underlying test arrangement and setup for the frameworks being assessed, 

barring ensuing boundary changes. 

 

A. Tahoe Test Environment 

The Tahoe test environment consist of three micro-ATX PCs. Their characteristics are available in Table II. Each 

machine is running the latest desktop version of Ubuntu 11.10 as of the time of this writing (Early April, 2012). 

Each machine has an identical 160GB SATA 3.0 Gb/s hard disk partitioned in the following manner using an 

MBR partition table: 

• sdX1 - 1 GB - primary - Swap partition 

• sdX2 - 60 GB - primary - ext4 OS partition 

• sdX3 - 100 GB - Extended partition table for LBA partitions 

• sdX5 - 30 GB - logical - ext4 - Tahoe Data partition 

• sdX6 - 30 GB - logical - TBD - Unused 

• sdX7 - 30 GB - logical - ext4 - Unused 

The figure shows our testbed setup. All machines are connected to each other via a 10/100 IPv4 Ethernet network 

connected to a Cisco Linksys WRT110 Switch. The network is local and shared only by the three 
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Fig. 3: Tahoe Testbed Setup 

 

test machines and the switch. The switch also acts as a router, gateway and firewall, regulating traffic to and 

from the Internet. The machines use static IP addresses: 

• xpc1 - 192.168.1.10 

• xpc2 - 192.168.1.11 

• xpc3 - 192.168.1.12 

• Switch - 192.168.1.1 

When running tests, we attempted to insure that each machine was performing no extra work other than the 

work required to run the benchmark and the backing file system under test. We also attempted to separate the 

behavior and performance of the various file systems under test to avoid cross-effects between the systems. Thus, 

only one file system was tested at a time, and all other file system were isolated to their own partition and 

shutdown while these tests were occurring. 

XPC1 is serves as both a Tahoe Introducer, and a Tahoe data node. XPC2 and XPC3 serve only as headless data 

nodes. XPC1 also serves hosts our primary interface to the Tahoe system: the Fuse SSHFS filesystem. This system 

provides a POSIX VFS compatible mount point into teh Tahoe system, allowing us to run tests as though it 

were a standard Unix filesystem. 

 

B. Ceph and Lustre Test Environment 

The Lustre/Ceph tests were conducted in a separate test environment from Tahoe due to the need for very specific 

resources.The objective in the evaluation was to evaluate a few straightforward use cases in a wide area setup 

with a limited number of nodes. We realize that a limited test environment as used here is not capable of 

supporting a broad number of scenarios and limits the conclusions that can be drawn particularly with respect to 

performance behavior across a more industrial strength implementation as well as related issues like fault 

tolerance; such a test would require a very large setup and considerably more resources to execute than we could 

secure for this project. Notwithstanding that fact, the test environment is briefly described below. 

The experimental evaluation of our system was conducted in a cluster of 14 identical PCs with dual core CPUs 

running at 1:2 GHz, 1 GB RAM, 1 HDD spinning at 7200 rpm and 1 Gbps Ethernet cards. All PCs were directly 

connected to a Gigabit Ethernet switch (HP ProCurve 1810g). The bandwidth measure- ment benchmarks 

conducted in the evaluation environment using netperf indicate a maximum data rate between two PCs (full-

duplex) of about 800 Mbps. For the Ceph system tests, we used the Ubuntu 10:04 distribution. For Lustre tests 

we used Ubuntu 8:10 with the patched kernel provided at the Lustre website. 

 

C. Tahoe - Establishment and Configuration 

We set up the Tahoe LAFS on three Ubuntu 11.10 PCs with a parcel mounted at/Tahoe. 

XPC1192.168.1.10 

Switch192.168.1.1 

XPC3192.168.1.12 XPC2192.168.1.11 
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Lustre Modification 

 

Design Problem and Challenges 

 

This module is a modification to Lustre to address issues that exist with the file system’s metadata server (MDS). Currently the file system provides only a standby 

architecture for the MDS. The current approach exposes the system to a single point of failure as it only uses one shared disk for its two MDSs. The intent of the 

module is to implement a process that replicates the MDS on several nodes, thus providing a higher degree of MDS availability. Note that baseline Lustre provides no 

replication capability, which is a severe weakness in its architectural design. 

Some direction to how this architectural change might be effected can be found by borrowing from the symmetric active/active architecture for the MDS of PVFS 

which provides some design guidance for a similar type issue. In that instance an internal replication of the MDS was implemented with the use of Transis as a group 

communication facility. In Lustre one can get similar results by isolating the MDS from the other system components and then replicating the MDS. The MDS 

replication can be done either externally or internally. A detailed discussion of the pros and cons of each is available at the Lustre wiki. 

For a number of reasons we chose to replicate externally. This approach constructs the group communication system like a wrapper around the MDS. The group 

communication system is placed into the Client-MDS communication path as an intermediate communication process. This process intercepts the network calls to and 

from the MDS and distributes the TCP packages to the group communication facility. The obvious benefit of this approach is that there is no need to touch the MDS 

code. Conversely, this approach will more than likely result in higher latency time due to the added overhead of inter-process communication. Additionally, the exact 

communication protocol and format between the MDS and the client must be known. This is an issue since the Lustre code manuals and wiki are uncharacteristically 

silent on this issue. 

Finally, this modification requires a slight reconfiguration of Lustre from the baseline configuration approach. In this modified configuration, Lustre and the network 

components are configured in a single XML file. In this way the file system 

assumes that every node in the file system uses the same XML file for the configuration and startup. However, there appears to be no significant issue in utilizing 

different XML files for separate nodes. A detailed discussion of the reconfiguration process is not provided here due to space limitations. 

Another critical issue in this redesign that needs to be addressed is the single instance execution problem. Since MDS members operate in synchrony each MDS has to 

generate the same output. The group communication software needs to be 
 
 

 

Fig. 4: The Lustre topology [13] 

 

1) Download the most recent Tahoe LAFS variant (e.g., 1.9.1) from [1] and remove it on every PC. 

2) Guarantee Python 2.7.2 is introduced (expected for Tahoe LAFS 2.4.4 or higher) [14]. 

3) Assemble Tahoe LAFS utilizing the order: 

python setup.py assemble 

4) Pick a PC (XPC1) to be the speaker because of better execution. Set up subdirectories for speaker and 

client on XPC1. 
5) Make the speaker hub utilizing: 
tahoe make speaker - - hub directory=/tahoe/speaker 

Alter the tahoe.cfg to design the moniker, web port, and offers. 
6) Start the speaker with: 
tahoe start - - hub directory=/tahoe/speaker/ 
 
7) On the client hubs (XPC2 and XPC3), make hubs with: 
tahoe make hub - - hub directory=/tahoe/ 

 
On XPC1, make the client hub: 
tahoe make hub - - hub directory=/tahoe/client/ 

8) Duplicate the speaker Roll into the clients’ tahoe.cfg document and arrange the moniker and offers. 

9) Start the client hubs with: tahoe start/tahoe/ On XPC1, use: 

tahoe start/tahoe/client/ 

https://www.ijirmps.org/


Volume 13 Issue 3                                       @ May - June 2025 IJIRMPS | ISSN: 2349-7300        

 

IJIRMPS2503232624          Website: www.ijirmps.org Email: editor@ijirmps.org 7 
 

We confirmed the arrangement by getting to the web interface at 127.0.0.1:3457 on XPC1 and 

transferring/downloading documents from the client interface at 127.0.0.1:3456. We affirmed that all hubs 

were associated and working accurately. 
For testing comfort, we composed contents to remotely begin/stop the hubs properly aligned, are given in 

Supplement. 

 

VI. CEPH - ESTABLISHMENT AND CONFIGURATION 

Ceph prescribes btrfs for capacity because of its versatility and exchange support. The principal arrangement 

record /and so on/ceph/ceph.conf is shared across hubs. It upholds both btrfs and ext4, with 

ext4 requiring extraordinary mounting choices. SSH keys should be set up for remote access. Ceph utilizes a 

piece driver or wire to mount and deal with full OSDs by rebalancing or expanding edges. Backup replay mode 
recuperates MDS disappointments by storing metadata. 

 

VII. LUSTRE - ESTABLISHMENT AND CONFIGURATION 

Radiance requires Linux bit 2.6.16+ and a fixed portion for MDS, MGS, or OSS. LNET organizing and MGS 

setup are fundamental. OSTs are made with an order and should indicate the MGS IP address. After establishment, 

Gloss is mounted and gotten to by clients, with discretionary high accessibility arrangements like Assault and 
failover. 

 

VIII. EVALUATION 

The quick advancement of capacity innovation is thwarted by the absence of comparing estimation devices. The 

shortfall of normalized assessment strategies and deficient measurements from capacity sellers makes it hard for 

clients to choose the right items, prompting terrible showing and squandered speculations. Slow capacity 

execution brings about longer question times and unfortunate client encounters, while wasteful utilization of quick 

stockpiling prompts pointless spending. 

Execution testing for circulated capacity frameworks is mind boggling, impacted by variables, for example, block 

size, document size, line profundity, read/compose proportion, circle speed, reserve size, Attack level, and 

capacity convention. Thusly, a solitary benchmark is deficient, and various benchmarks are required for precise 

and solid testing. 

The testing stage plans to assess the tradeoffs in framework plan and what these decisions mean for execution. 

The Linux test stage surveys document framework I/O execution (total transmission capacity, simultaneous 

access, and metadata throughput) and circle exhibit I/O execution (IOPS, DTR), with adaptable boundaries, 

for example, record size, block size, line profundity, and read/compose proportions. The testing system 

incorporates choosing benchmarks, arranging boundaries, picking the objective circulated document 

framework and test hubs, running the tests, showing results, and creating reports. 

Test results and designs are put away in a data set for simple correlation. 

To oversee and screen tests, the stage should uphold dynamic expansion/evacuation of test hubs, guaranteeing 

versatility and effective errand the board. 

 

A. Tahoe Tests 

We assessed the Tahoe framework’s throughput and idleness utilizing the Unix dd utility, with timing from GNU 

time, date, and Tahoe’s inherent instrumentation. Tests included record sizes from 1 MiB to 3 GiB and both 

irregular (/dev/urandom) and zero-filled (/dev/zero) information. We estimated read and compose 

throughput, and compose dormancy. 
For read and compose throughput, we utilized: 

date; dd if=<Tahoe File> of=/dev/invalid bs=1024; date; date; dd 

if=/dev/urandom of= 
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<Tahoe File> bs=1024 count=<size>; date; 

Compose idleness was determined from the time between the fruition of the dd compose and record 

accessibility in Tahoe. 

 

B. Ceph and Gloss Tests 

We evaluated the I/O execution of Ceph and Brilliance utilizing the IOzone device with consecutive and arbitrary 

access designs. Frameworks had 13 capacity hubs, one metadata server, and one client, with a 1 MB block size. 
We likewise tried versatility with synchronized clients utilizing the xdd instrument, and assessed replication 

execution. Ceph and Tahoe support replication, with Ceph’s bigger stripe size affecting execution. 

 

IX. RESULTS 

Here we discuss the relevant results from each of our three tests systems. 

 

A. Tahoe Results 

The full set of Tahoe read and write results are available. We present an illustrative subset of the results here. 

Table III shows write throughput speeds for files composed of random data. The average end-to-end write 

throughput using random data is 0.52 MiB/s. 

TABLE III: Tahoe random Write Throughput by File Size 
 

Data Size Base Overhead End-to-End 

random 1 MiB 1.02 MiB/s 1.00 MiB/s 0.51 MiB/s 

random 10 MiB 0.99 MiB/s 1.11 MiB/s 0.53 MiB/s 

random 100 MiB 0.98 MiB/s 1.39 MiB/s 0.57 MiB/s 

random 1 GiB 1.05 MiB/s 1.48 MiB/s 0.61 MiB/s 

random 2 GiB 1.03 MiB/s 1.49 MiB/s 0.61 MiB/s 

random 3 GiB 1.03 MiB/s 0.41 MiB/s 0.29 MiB/s 

Table IV shows write throughput speeds for files composed of zeros data. The average end-to-end write 

throughput using zeros data is 0.69 MiB/s. 

TABLE IV: Tahoe zeros Write Throughput by File Size 
 

Data Size Base Overhead End-to-End 

zeros 1 MiB 1.11 MiB/s 1.00 MiB/s 0.50 MiB/s 

zeros 10 MiB 1.20 MiB/s 1.43 MiB/s 0.63 MiB/s 

zeros 100 MiB 1.15 MiB/s 1.35 MiB/s 0.62 MiB/s 

zeros 1 GiB 1.17 MiB/s 7.64 MiB/s 1.01 MiB/s 

zeros 2 GiB 1.15 MiB/s 7.56 MiB/s 0.99 MiB/s 

zeros 3 GiB 1.15 MiB/s 0.65 MiB/s 0.41 MiB/s 

As we can see from the write data, it appears that Tahoe’s compression capabilities are kicking on for the larger 

’zeros’ files. Random files are not generally compressible, so no such effect is seen there. Files exceeding 2 GiB 

also seem to suffer a significant performance hit. This may be due to limits imposed by the amount of RAM 

available on our test machines. The large files may be forcing the SSHFS system to use a lot of swap-space 

since each machine was only equipped with 1GB of RAM, leading to a performance crash above a certain file 

size. 

Table V shows read throughput speeds for files composed of random data. The average read throughput using 

random data is 1.32 MiB/s. 
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TABLE V: Tahoe random Read Throughput by File Size 
 

Data Size Base 

random 1 MiB 1.54 MiB/s 

random 10 MiB 1.32 MiB/s 

random 100 MiB 1.11 MiB/s 

TABLE VI: Tahoe zeros Read Throughput by File Size 
 

Data Size Base 

zeros 1 MiB 1.61 MiB/s 

zeros 10 MiB 1.53 MiB/s 

zeros 100 MiB 1.13 MiB/s 

 

Table VI shows read throughput speeds for files composed of zeros data. The average read throughput using zeros 

data is 1.42 MiB/s. 

Tahoe read throughput tends to be about twice that of write throughput. This is likely due to a combination of 

the fact that Tahoe must propagate write changes across the network, as well as the fact that the SSHFS 

interface must cache the file before uploading it. No read data was collected for files larger than 100 MiB. The 

system became unstable when we attempted to read files of this size. Again, this may be a limitation of the 

system RAM size and the SSHFS interface. 

 

X. CEPH AND SHINE RESULTS SUMMARY 

Figures show performance across nonconcurrent I/O workloads for Lustre256, Lustre0, and Ceph. As file sizes 

grow, throughput stabilizes due to reduced caching. Lustre0 outperforms Ceph and Lustre256 in sequential 

writes but is limited by network bandwidth (95 MB/s). Ceph excels in larger file stripes but incurs higher file 

operation costs. 

For concurrent writes, Lustre scales up to 300 MB/s, while Ceph peaks at 180 MB/s. Sequential reads and writes 

remain stable at larger request sizes, reaching 330 MB/s for reads. Ceph saturates uplinks during asynchronous 

writes, while Tahoe performs better in direct writes but degrades with additional replicas. 

 

XI. GENERAL CONCLUSIONS 

Traditional DFS solutions (e.g., Lustre, HDFS) rely on a single metadata server, limiting scalability. Newer 

systems like Ceph distribute metadata but neglect network traffic optimization. Future DFS should minimize 

inter-server communication, leverage on-demand data retrieval, and reassess data redundancy strategies. A 

topology-aware striping mechanism could enhance performance in multi-application envi- ronments. 

 

A. System-Specific Conclusions 

Tahoe: Secure against untrusted storage nodes through encryption but suffers from slow writes, making it suitable 

for archival storage. 

Ceph: Scalable with dynamic metadata distribution and replication but hindered by immaturity, limited 

documentation, and WAN performance concerns. 

Lustre: Highly performant in HPC environments but bottlenecked by a single metadata server and lacks 

native replication. 

 

B. Comparison 

Table VII provides a side-by-side comparison of the three systems. Tahoe is best for untrusted envi- ronments, 

Lustre for HPC workloads, and Ceph for a modern POSIX-compliant storage system. Tahoe’s encryption 

overhead impacts performance, while Ceph and Lustre achieve higher throughput. 
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TABLE VII: Comparison of Distributed Storage Systems 
 

Feature Tahoe Lustre Ceph 

Throughput Low High High 

Latency High Low Low 

Fault 

Tolerance 

User- 

defined 

Failover Replication 

Security High Moderate High 

Installation Dist. Dist. Dist. 

Management Dist. Dist. Dist. 

Compatibility Multi-OS Linux Linux 

Data 

Placement 

Random Heuristics Groups 

Storage Tiers None OSTs CRUSH 

Maintained Yes Yes Yes 

Development Yes Yes Yes 

 

XII. FUTURE WORK 

Scaling tests across multiple geographically distributed sites would provide better insights into real-world WAN 

performance. Future experiments should incorporate diverse hardware setups (SSD, SAS, RAID) and network 

technologies (Ethernet, InfiniBand). Enhancements could include a native FUSE interface for Tahoe, improved 

metadata redundancy in Lustre, and streamlined deployment tools for Ceph. 
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